Two high-affinity mAbs were prepared against Torpedo dystrophin, an electric organ protein that is closely similar to human dystrophin, the gene product of the Duchenne muscular dystrophy locus. The antibodies were used to localize dystrophin relative to acetylcholine receptors (AChR) in electric organ and in skeletal muscle, and to show identity between Torpedo dystrophin and the previously described 270/300-kD Torpedo postsynaptic protein. Dystrophin was found in both AChR-rich and AChR-poor regions of the innervated face of the electroplaque. Immunogold experiments showed that AChR and dystrophin were closely intermingled in the AChR domains. In contrast, dystrophin appeared to be absent from many or all AChR-rich domains of the rat neuromuscular junction and of AChR clusters in cultured muscle (Xenopus laevis). It was present, however, in the immediately surrounding membrane (deep regions of the junctional folds, membrane domains interdigitating with and surrounding AChR domains within clusters). These results suggest that dystrophin may have a role in organization of AChR in electric tissue. Dystrophin is not, however, an obligatory component of AChR domains in muscle and, at the neuromuscular junction, its roles may be more related to organization of the junctional folds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2289019PMC
http://dx.doi.org/10.1083/jcb.113.5.1133DOI Listing

Publication Analysis

Top Keywords

achr domains
12
dystrophin
9
dystrophin relative
8
relative acetylcholine
8
electric tissue
8
skeletal muscle
8
torpedo dystrophin
8
electric organ
8
achr electric
8
neuromuscular junction
8

Similar Publications

Article Synopsis
  • The study investigates the use of a targeted nanotherapeutic drug that responds to the tumor microenvironment, specifically focusing on its effects on PBK in medulloblastoma cells (Daoy and ONS-76).
  • Utilizing the rabies virus glycoprotein (RVG), the researchers developed a nanocomplex (HPAA/RVG/PBK-siRNA) that includes a microenvironment stimulus (glutathione) and delivers PBK-siRNA for targeted therapy.
  • Various analytical methods were used to evaluate the characteristics and effectiveness of this nanocomplex, demonstrating potential benefits for improving treatment strategies in medulloblastoma.
View Article and Find Full Text PDF

Growing evidence indicates that brain-derived neurotrophic factor (BDNF) is produced in contracting skeletal muscles and is secreted as a myokine that plays an important role in muscle metabolism. However, the involvement of muscle-generated BDNF and the regulation of its vesicular trafficking, localization, proteolytic processing, and spatially restricted release during the development of vertebrate neuromuscular junctions (NMJs) remain largely unknown. In this study, we first reported that BDNF is spatially associated with the actin-rich core domain of podosome-like structures (PLSs) at topologically complex acetylcholine receptor (AChR) clusters in cultured Xenopus muscle cells.

View Article and Find Full Text PDF

The localization and clustering of neurotransmitter receptors at appropriate postsynaptic sites is a key step in the control of synaptic transmission. Here, we identify a novel paradigm for the synaptic localization of an ionotropic acetylcholine receptor (AChR) based on the direct interaction of its extracellular domain with a cell adhesion molecule of the IgLON family. Our results show that RIG-5 and ZIG-8, which encode the sole IgLONs in are tethered in the pre- and postsynaptic membranes, respectively, and interact through their first immunoglobulin-like (Ig) domains.

View Article and Find Full Text PDF
Article Synopsis
  • Eculizumab has shown promise in helping patients with myasthenic crisis recover from respiratory support, but more research is needed to fully understand its safety and effectiveness.
  • In this study, patients with anti-acetylcholine receptor antibody-positive myasthenia gravis received eculizumab for 12 weeks, resulting in significant improvements in muscle strength and daily living activities as early as 4 weeks.
  • Although one patient experienced cardiac failure, most reported no severe side effects, indicating that eculizumab is well tolerated; further large studies are required to confirm these findings.
View Article and Find Full Text PDF

Background: Neuronal nicotinic acetylcholine receptors (nAChRs) are abundant in the central nervous system (CNS), playing critical roles in brain function. Antigenicity of nAChRs has been well demonstrated with antibodies to ganglionic AChR subtypes (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!