The fate of developing tooth buds located in relation to mandibular fractures was investigated in three infancy cases. Three infants, 2 girls and a boy, aged from 1 year and 5-months old to 2 years and 6-months old, were treated for dislocated mandibular fracture in the symphyseal region by manual reduction and fixation with a thermoforming splint and circumferential wiring under general anesthesia. Fracture healing was uneventful in all cases. A few years later, no obvious deformity of the jaw or malocclusion was observed; however, malformation of the crown was found in one of the permanent teeth on the fracture line in the first case. In the second case, no abnormality was observed in one of the permanent teeth on the fracture line, but the effect on the other tooth could not be evaluated due to abnormality of the tooth probably not related to the injury. In the third case, root formation was arrested in one of the permanent teeth on the fracture line and the tooth was lost early after eruption. The development of tooth buds on the fracture line is not predictable and therefore, should be monitored by regular follow up.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1600-9657.2010.00865.xDOI Listing

Publication Analysis

Top Keywords

tooth buds
12
permanent teeth
12
teeth fracture
12
fate developing
8
developing tooth
8
buds located
8
located relation
8
relation mandibular
8
mandibular fractures
8
three infancy
8

Similar Publications

The prevalence of oromaxillofacial fracture in pediatric patients is comparatively less than in adults, which could be due to several inconclusive factors, such as infrequent exposure to high-contact sports games, rash driving of vehicles and motorbikes, alcohol consumption, and fist fights for personal reasons under the influence of alcohol. More importantly, most of the time, children are under the care of their parents till they reach an age of maturity. One more thing that everyone believes even today is the elasticity nature of their bones as well as their body weight during their growing stage.

View Article and Find Full Text PDF

Chlorhexidine-loaded microneedles for treatment of oral diseases.

Int J Pharm

December 2024

Department of Pharmaceutical Engineering, Azrieli College of Engineering Jerusalem, Jerusalem 9103501, Israel. Electronic address:

Chlorhexidine (CHX) is a gold standard therapeutic agent against clinical oral pathogens. However, its oral use is limited due to unpleasant taste, alteration in taste buds, staining of teeth and mucous membranes. Therefore, CHX-loaded PLGA microneedles (MNs) were fabricated for local and controlled release in the oral cavity, using a casting mold method.

View Article and Find Full Text PDF

In vivo bioengineered tooth formation using decellularized tooth bud extracellular matrix scaffolds.

Stem Cells Transl Med

December 2024

Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, MA 02111, United States.

The use of dental implants to replace lost or damaged teeth has become increasingly widespread due to their reported high survival and success rates. In reality, the long-term survival of dental implants remains a health concern, based on their short-term predicted survival of ~15 years, significant potential for jawbone resorption, and risk of peri-implantitis. The ability to create functional bioengineered teeth, composed of living tissues with properties similar to those of natural teeth, would be a significant improvement over currently used synthetic titanium implants.

View Article and Find Full Text PDF

With the current state of knowledge regarding disorders of facial bone development, including anodontia, the development of a suitable animal model for preclinical studies is essential. The agenesis of dental buds occurs in about 25% of the human population. Prospects for treatment include the use of growth factors, stem cells, and bioengineering.

View Article and Find Full Text PDF

The strawberry blossom weevil, Anthonomus rubi (Herbst) (Coleoptera: Curculionidae), is native to Europe, Asia, and parts of North Africa, and has recently established in British Columbia, Canada and Washington State, USA. To determine whether any parasitoids in British Columbia parasitize this recently-established pest, A. rubi-infested buds of Rosaceous host plants were collected and reared for parasitoid emergence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!