This paper describes a new conceptual design for enhancement of photocatalytic CO(2) reduction of a rhenium(I) complex by light harvesting of periodic mesoporous organosilica (PMO). Mesoporous biphenyl-silica (Bp-PMO) anchoring fac-[Re(I)(bpy)(CO)(3)(PPh(3))](+)(OTf)(-) (bpy =2,2'-bipyridine; OTf = CF(3)SO(3)) in the mesochannels was synthesized by co-condensation of two organosilane precursors, 4,4'-bis(triethoxysilyl)biphenyl and 4-[4-{3-(trimethoxysilyl)propylsulfanyl}butyl]-4'-methyl-2,2'-bipyridine in the presence of a template surfactant, followed by coordination of a rhenium precursor, [Re(I)(CO)(5)(PPh(3))](+)(OTf)(-) to the bipyridine ligand in the mesochannels. The 280 nm light was effectively absorbed by the biphenyl groups in Bp-PMO, and the excited energy was funneled into the Re complex by resonance energy transfer, which enhanced photocatalytic CO evolution from CO(2) by a factor of 4.4 compared with direct excitation of the Re complex. Bp-PMO had an additional merit to protect the Re complex against a decomposition by UV irradiation. These results demonstrate the potential of PMOs as a light-harvesting antenna for designing various photoreaction systems, mimicking the natural photosynthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic1000914DOI Listing

Publication Analysis

Top Keywords

rheniumi complex
8
periodic mesoporous
8
mesoporous organosilica
8
complex
5
enhanced photocatalysis
4
photocatalysis rheniumi
4
complex light-harvesting
4
light-harvesting periodic
4
organosilica paper
4
paper describes
4

Similar Publications

A series of substituted 2-(2-benzylidenehydrazinyl)benzothiazole Schiff-base derivatives and complexes containing Re(I) were synthesized and analyzed using various characterization techniques, including elemental analysis, conductance measurement, H-NMR, FT-IR, and LC-MS. The biological activities of the compounds were evaluated. Binding affinity between the complexes and calf thymus DNA (CT-DNA) was conducted using UV-visible spectroscopy, viscosity measurement, fluorescence spectroscopy, and molecular docking studies, indicating intercalation binding mode.

View Article and Find Full Text PDF

Improvements to the understanding of how reaction conditions influence the performance of molecular electrocatalysts are important. There exists a wide range of solution conditions that are used in the investigation of the properties and performance of electrocatalysts, from the choice of solvent or electrolyte to the identity and nature of other additives, like Brønsted acids. Herein, we demonstrate how the choice of solvent can have a significant impact on the observed rate constants for CO-to-CO conversion by a series of rhenium(I) diimine complexes.

View Article and Find Full Text PDF

Chiral rhenium(I) emitters exhibiting circularly polarized phosphorescence (CPP) are an attractive mainstay for CP organic light-emitting diodes (CP-OLEDs). However, the efficiency of such emitters is not ideal, and they have never been explored for circularly polarized electroluminescence (CPEL) applications. Here, we have tailored robust chiral Re(I) complexes with improved CPP properties, and demonstrated CPEL from rhenium emitters for the first time.

View Article and Find Full Text PDF

Transition metal complex-loaded nanosystems (TMCNs) represent a cutting-edge platform for stimuli (light, ultrasound)-responsive cancer therapies. These nanosystems, incorporating metals such as manganese(II), zinc(II), ruthenium(II), rhenium(I), iridium(III), and platinum(IV), significantly enhance the efficacy of light-activated therapies, including photodynamic therapy (PDT) and photothermal therapy (PTT), as well as ultrasound-activated treatments like sonodynamic therapy (SDT). TMCNs based on ruthenium(II), rhenium(I), and iridium(III) improve PDT, while manganese(II) and iridium(III) demonstrate exceptional sonosensitizing properties.

View Article and Find Full Text PDF

Novel 6-substituted 2-(trifluoromethyl)quinoline 5a-5e and coumarin 6a-6d ligands with aldoxime ether linked pyridine moiety were synthesized by O-alkylation of quinoline and coumarin with (E)-picolinaldehyde oxime and subsequently with [Re(CO)Cl] gave rhenium(I) tricarbonyl complexes 5a-5e and 6a-6d that were fully characterized by NMR, single-crystal X-ray diffraction, IR and UV-Vis spectroscopy. The results of antiproliferative evaluation of quinoline and coumarin ligands and their rhenium(I) tricarbonyl complexes on various human tumor cell lines, including acute lymphoblastic leukemia (CCRF-CEM), acute monocytic leukemia (THP1), cervical adenocarcinoma (HeLa), colon adenocarcinoma (CaCo-2), T-cell lymphoma (HuT78), and non-tumor human fibroblasts (BJ) showed that the quinoline complexes 5a-5e had higher inhibitory activity than coumarin complexes 6a-6d, particularly against T-cell lymphoma (HuT78) cells. 6-Methoxy-2-(trifluoromethyl)quinoline 5e and 6-methylcoumarin 6d, and their rhenium(I) tricarbonyl complexes 5e and 6d were found to arrest the cell cycle of HuT78 cells by causing a significant accumulation of cells in the G0/G1 phase and a marked decrease in the number of cells in the G2/M phase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!