Samarium 3+ ions in methanol were found to be reduced to the corresponding 2+ ions upon irradiation with intense femtosecond laser pulses. The reduction was observed at both pulses with central wavelengths of 403 nm converted from an 800 fs fundamental pulse and 800 nm with a duration of 43 fs. When the laser wavelength was tuned to the 4f-4f absorption at 403 nm corresponding to the (6)P(3/2) <-- (6)H(5/2) transition, the reduction occurred by multiphoton absorption, presumably due to reaching the deep charge transfer state. In the case of excitation by 800 nm pulses of the fundamental wavelength of the Ti:sapphire laser, the reduction is considered to occur via solvent ionization followed by electron capture by Sm(3+). The product Sm(2+) was detected by its fluorescence, which was observed for the first time in solution and showed a broad spectrum peak around 750 nm with a quantum yield of 0.050 in methanol in the presence of 15-crown-5-ether.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp9109089 | DOI Listing |
Metal halide perovskites have unique luminescent properties that make them an attractive alternative for high quality light-emitting devices. However, the poor stability of perovskites with many defects and the long cycle time for the preparation of perovskite nanocomposites have hindered their production and application. Here, we prepared the perovskite mesostructures by embedding MAPbBr nanocrystals in the mesopores on the surface of silica nanospheres and mixing the nanospheres with silver nanowires and poly(methyl methacrylate) (PMMA), and further explored their optical properties.
View Article and Find Full Text PDFWe demonstrate a wide-tunable random fiber laser (RFL) with narrow linewidth and low noise. The tunable RFL is achieved by combining random feedback from a disordered fiber Bragg grating array (FBGA) with a broad scattering wavelength range and the gain from an erbium-doped fiber (EDF) with a broad amplification wavelength range. The disordered FBGA is fabricated using a femtosecond laser direct writing technique by varying the random distances and grating periods.
View Article and Find Full Text PDFThe ever-increasing energy/power of modern laser sources is inevitably leading to new challenges and opportunities. One of them is the problem of spectral broadening of high-energy femtosecond pulses and their subsequent compression in time in, e.g.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
East China Normal University, Department of Chemistry, 3663 N. Zhongshan Road, 200062, Shanghai, CHINA.
Aiming at the construction of novel platforms with excellent performances in both circularly polarized photoluminescence (CP-PL) and electrochemiluminescence (CP-ECL), a new family of pyrenophanes with rigidly locked pyrene dimers and varied bridges has been designed and synthesized. Attributed to densely packed pyrene excimers, the resultant pyrenophanes revealed tunable bridge-dependent emission behaviors, as investigated by femtosecond time-resolved transient absorption spectroscopy. More importantly, all these planar chiral pyrenophanes display strong CP-PL with large dissymmetry factor (gPL) values up to 0.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata-700106, India.
Herein, we investigated the carrier-phonon relaxation process in a two-dimensional (2D) BAPbBr perovskite and its heterostructure with MoS. Energy transfer was observed in the van der Waals heterostructure of 2D perovskite and monolayer MoS, leading to enhancement in the photoluminescence intensity of MoS. Femtosecond pump-probe spectroscopy was used to study the carrier and lattice dynamics of pristine 2D materials and their heterostructure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!