A series of mononuclear and dinuclear cyclometalated platinum(II) 6-phenyl-4-(9,9-dihexylfluoren-2-yl)-2,2'-bipyridine complexes (F-1-F-5) were synthesized and their photophysical properties were systematically investigated. All complexes exhibit strong (1)pi,pi* absorption bands in the UV region, and a broad, structureless charge transfer band in the visible region. The charge-transfer band is broadened and red-shifted for F-3-F-5 compared to those for F-1 and F-2 because of the electron-donating acetylide ligand and the involvement of the ligand-to-ligand charge transfer character. The molar extinction coefficients for the dinuclear complex F-5 are much higher than those for the mononuclear complexes F-1-F-4, indicating the electronic coupling through the bridge ligand. All complexes are emissive in solution at room temperature and in glassy matrix at 77 K. When excited at the charge transfer absorption band, the complexes exhibit a long-lived red/orange emission around 600 nm, which is attributed to a triplet metal-to-ligand charge transfer/intraligand charge transfer emission ((3)MLCT/(3)ILCT). For emission at 77 K, the emitting state is tentatively assigned as (3)MLCT for F-2-F-4, and (3)MLCT/(3)pi,pi* for F-1 and F-5 taking into account the emission energy, the shape of the spectrum, the lifetime, and the thermally induced Stokes shift. F-1-F-4 exhibit broad triplet transient difference absorption in the visible to the near-IR region, with a lifetime comparable to those measured from the decay of the (3)MLCT/(3)ILCT emission. Therefore, F-1-F-4 give rise to a strong reverse saturable absorption for ns laser pulses at 532 nm. Z-scan experiments were carried out at 532 nm using both ns and ps laser pulses, and the experimental data was fitted by a five-band model to extract the singlet and triplet excited-state absorption cross sections. The degree of reverse saturable absorption follows this trend: F-1 = F-2 > F-3 > F-4 > F-5, which is mainly determined by the ratio of the triplet excited-state absorption cross-section to that of the ground-state and the triplet excited-state quantum yield. Comparison of the photophysics of F-1, F-2, and F-3 to those of their corresponding Pt complexes without the fluorenyl substituent discovers that F-1-F-3 exhibit larger molar extinction coefficients for their low-energy charge transfer absorption band, longer triplet excited-state lifetimes, higher emission quantum yields, and increased ratios of the excited-state absorption cross-section to that of the ground-state.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic902281aDOI Listing

Publication Analysis

Top Keywords

charge transfer
20
triplet excited-state
16
f-1 f-2
12
excited-state absorption
12
absorption
10
cyclometalated platinumii
8
platinumii 6-phenyl-4-99-dihexylfluoren-2-yl-22'-bipyridine
8
6-phenyl-4-99-dihexylfluoren-2-yl-22'-bipyridine complexes
8
complexes exhibit
8
molar extinction
8

Similar Publications

Vintages for New Fashion: Red-Shifted Photoswitching via the Triplet-Photoreaction Channel with Charge-Transfer Complex Sensitizers.

J Am Chem Soc

January 2025

Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China.

Triplet-sensitization has been proven invaluable for creating photoswitches operated over a full visible-light spectrum. While designing efficient triplet-sensitizers is crucial for establishing visible-light photochromism, it remains an appealing yet challenging task. In this work, we propose a versatile strategy to fabricate triplet-sensitizers with intermolecular charge-transfer complexes (CTCs).

View Article and Find Full Text PDF

The side-chain directions in nonfullerene acceptors (NFAs) strongly influence the intermolecular interactions in NFAs; however, the influence of these side chains on the morphologies and charge carrier dynamics of Y6-based acceptors remains underexplored. In this study, we synthesize four distinct Y6-based acceptors, i.e.

View Article and Find Full Text PDF

NH-MIL-125(Ti) and its functional nanomaterials - a versatile platform in the photocatalytic arena.

Nanoscale

January 2025

Centre for Nano Science and Nano Technology, S 'O' A (Deemed to be University), Bhubaneswar-751 030, Odisha, India.

Titanium (Ti)-based MOFs are promising materials known for their porosity, stability, diverse valence states, and a lower conduction band (CB) than Zr-MOFs. These features support stable ligand-to-metal charge transfer (LMCT) transitions under photoirradiation, enhancing photocatalytic performance. However, Ti-MOF structures remain a challenge owing to the highly volatile and hydrophilic nature of ionic Ti precursors.

View Article and Find Full Text PDF

Commercial hard carbon (HC) anode suffers from unexpected interphase chemistry rooted in the parasitic reactions between surface oxygen-functional groups and ester-based electrolytes. Herein, an innovative strategy is proposed to regulate interphase chemistry by tailoring targeted functional groups on the HC surface, where highly active undesirable oxygen-functional groups are skillfully converted into a Si-O-Si molecular layer favorable for anchoring anions. Then, an inorganic/organic hybrid solid electrolyte interphase with low interfacial charge transfer resistance and enhanced cycling durability is constructed successfully.

View Article and Find Full Text PDF

Understanding the arrangement of ionic liquids at the interface and their interactions with the surface is crucial for enhancing selectivity in heterogeneous reactions for practical applications. In this study, we investigate the nature of the adsorption and structural orientations of a sulfonyl-based ionic liquid on platinum-based mono- and bimetallic (111) surfaces employing replica exchange molecular dynamics and first-principles density functional theory calculations. More than 30 confirmations of the ionic liquid are identified on both monometallic and bimetallic surfaces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!