The amyloid precursor protein (APP) is critically involved in the pathogenesis of Alzheimer's disease, and is strongly up-regulated in response to traumatic, metabolic, or toxic insults to the nervous system. The processing of APP by gamma/epsilon-secretase activity results in the generation of the APP intracellular domain (AICD). Previously, we have shown that AICD induces the expression of genes (transgelin, alpha2-actin) with functional roles in actin organization and dynamics and demonstrated that the induction of AICD and its co-activator Fe65 (AICD/Fe65) resulted in a loss of organized filamentous actin structures within the cell. As mitochondrial function is thought to be reliant on ordered actin dynamics, we examined mitochondrial function in human SHEP neuroblastoma cells inducibly expressing AICD/Fe65. Confocal analysis of the mitochondrial membrane potential (DeltaPsim) identified a significant decrease in the DeltaPsim in the AICD50/Fe65 over-expressing cells. This was paralleled by significantly reduced ATP levels and decreased basal superoxide production. Overexpression of the proposed AICD target gene transgelin in SHEP-SF parental cells and primary neurons was sufficient to destabilize actin filaments, depolarize DeltaPsim, and significantly alter mitochondrial distribution and morphology. Our data demonstrate that the induction of AICD/Fe65 or transgelin significantly alters actin dynamics and mitochondrial function in neuronal cells.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1471-4159.2010.06615.xDOI Listing

Publication Analysis

Top Keywords

actin dynamics
12
mitochondrial function
12
amyloid precursor
8
precursor protein
8
dynamics mitochondrial
8
actin
6
mitochondrial
6
protein intracellular
4
intracellular domainaicd
4
domainaicd disrupts
4

Similar Publications

Background: Epilepsy has a genetic predisposition, yet causal factors and the dynamics of the immune environment in epilepsy are not fully understood.

Methods: We analyzed peripheral blood samples from epilepsy patients, identifying key genes associated with epilepsy risk through Mendelian randomization, using eQTLGen and genome-wide association studies. The peripheral immune environment's composition in epilepsy was explored using CIBERSORT.

View Article and Find Full Text PDF

Background: Host commensal gut microbes are shown to be crucial for microglial maturation, and functions that involve innate immune responses to maintain brain homeostasis. Sex has a crucial role in the incidence of neurological diseases with females showing higher progression of AD compared with males. Transcriptomics has been a powerful tool for the characterization of microglial phenotypes however, there is a large gap in relating to their functional protein abundances.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have identified genetic polymorphisms of ABI3 as a risk factor for late-onset Alzheimer's Disease (LOAD), but the role of ABI3 in microglia is not well understood.
  • Using CRISPR/Cas9, a specific risk variant (S212F) was introduced into mouse models to study its effects on AD-related pathologies alongside 5xFAD mice over time.
  • Results showed that the 5xFAD/Abi3 mice exhibited a decrease in amyloid beta plaque burden and a significant reduction in microglia numbers with age, suggesting ABI3 may influence both plaque formation and microglial response in AD pathology.
View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Centre for Brain Research, Indian Institute of Science, Bangalore, Karnataka, India.

Background: F-actin plays crucial roles in establishment and maintenance of synapses including post synaptic density organization, facilitation of vesicle trafficking, anchoring of postsynaptic receptors, and involvement in translational machinery. Proteomic analysis of actin-interacting proteins revealed the interaction of PSD-95 with actin in synaptosomes from brain cortex of APP/PS1 mice. PSD-95 functions as a critical scaffold for the assembly of neurotransmitter receptors at the synapse, playing a pivotal role in regulating synaptic strength and plasticity.

View Article and Find Full Text PDF

Role of GPR55 receptor in bovine sperm capacitation.

Andrology

January 2025

Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Facultad de Medicina-Universidad de Buenos Aires (UBA/CONICET), Buenos Aires, Argentina.

Background: Endocannabinoids like anandamide (AEA), among other lipids, are recognized signaling molecules that participate in reproductive events.

Objectives: Our aims were to characterize orphan G protein-coupled receptor (GPR55) presence; investigate GPR55 activation by AEA and determine GPR55 role in the bovine sperm function.

Materials And Methods: GPR55 presence was assessed by immunocytochemistry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!