Background: Hydrogen production by fermenting bacteria such as Escherichia coli offers a potential source of hydrogen biofuel. Because H(2) production involves consumption of 2H(+), hydrogenase expression is likely to involve pH response and regulation. Hydrogenase consumption of protons in E. coli has been implicated in acid resistance, the ability to survive exposure to acid levels (pH 2-2.5) that are three pH units lower than the pH limit of growth (pH 5-6). Enhanced survival in acid enables a larger infective inoculum to pass through the stomach and colonize the intestine. Most acid resistance mechanisms have been defined using aerobic cultures, but the use of anaerobic cultures will reveal novel acid resistance mechanisms.

Methods And Principal Findings: We analyzed the pH regulation of bacterial hydrogenases in live cultures of E. coli K-12 W3110. During anaerobic growth in the range of pH 5 to 6.5, E. coli expresses three hydrogenase isoenzymes that reversibly oxidize H(2) to 2H(+). Anoxic conditions were used to determine which of the hydrogenase complexes contribute to acid resistance, measured as the survival of cultures grown at pH 5.5 without aeration and exposed for 2 hours at pH 2 or at pH 2.5. Survival of all strains in extreme acid was significantly lower in low oxygen than for aerated cultures. Deletion of hyc (Hyd-3) decreased anoxic acid survival 3-fold at pH 2.5, and 20-fold at pH 2, but had no effect on acid survival with aeration. Deletion of hyb (Hyd-2) did not significantly affect acid survival. The pH-dependence of H(2) production and consumption was tested using a H(2)-specific Clark-type electrode. Hyd-3-dependent H(2) production was increased 70-fold from pH 6.5 to 5.5, whereas Hyd-2-dependent H(2) consumption was maximal at alkaline pH. H(2) production, was unaffected by a shift in external or internal pH. H(2) production was associated with hycE expression levels as a function of external pH.

Conclusions: Anaerobic growing cultures of E. coli generate H(2) via Hyd-3 at low external pH, and consume H(2) via Hyd-2 at high external pH. Hyd-3 proton conversion to H(2) is required for acid resistance in anaerobic cultures of E. coli.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2853565PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0010132PLOS

Publication Analysis

Top Keywords

acid resistance
24
acid
12
cultures coli
12
acid survival
12
escherichia coli
8
anaerobic cultures
8
coli
7
cultures
7
resistance
6
production
6

Similar Publications

Carriage of antimicrobial resistance genes in Escherichia coli of bovine origin.

Pol J Vet Sci

December 2024

Department of Animal Nutrition and Husbandry, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice, 04181, Slovakia.

The present study aimed to search for the presence of the plasmid-mediated antimicrobial resistance genes in 106 Escherichia coli (E. coli) isolates from a total of 240 fresh fecal samples collected from 12 private cattle farms in Bingol province of East Turkey from November 2021 to January 2022. In those colistin-resistant E.

View Article and Find Full Text PDF

Detection and Molecular Characterization of from Wastewater Environments in Two University Campuses in Nigeria.

Front Biosci (Elite Ed)

December 2024

Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, 4000 Durban, South Africa.

Background: () is the most prominent bacterial pathogen that causes urinary tract infections (UTIs), and the rate of resistance to most used antibiotics is alarmingly increasing.

Methods: This study assessed the hostel gutters of two Nigerian universities, the University of Nigeria, Nsukka (UNN) and Kogi State University, Anyigba (KSU), for and its antimicrobial resistance genes (). Oxoid Chromogenic UTI agar was used to isolate uropathogenic (UPEC), identified using standard biochemical tests.

View Article and Find Full Text PDF

Four new macrolides, spirosnuolides A-D (-, respectively), were discovered from the termite nest-derived sp. INHA29. Spirosnuolides A-D are 18-membered macrolides sharing an embedded [6,6]-spiroketal functionality inside the macrocycle and are conjugated with structurally uncommon side chains featuring cyclopentenone, 1,4-benzoquinone, hydroxyfuroic acid, or butenolide moieties.

View Article and Find Full Text PDF

Background: poses a significant public health threat. Phage-encoded antimicrobial peptides (AMPs) have emerged as promising candidates in the battle against antibiotic-resistant .

Methods: Antimicrobial peptides from the endolysin of bacteriophage were designed from bacteriophage vB_AbaM_PhT2 and vB_AbaAut_ChT04.

View Article and Find Full Text PDF

To understand the colonization status of Group B Streptococcus (GBS) in the reproductive tract of pregnant women in the Linyi region, the drug resistance, genotype distribution, and molecular epidemiological characteristics of GBS, and to explore the high-risk factors for GBS infection in late-stage pregnant women. A total of 3269 pregnant women at 35-37 weeks of gestation who visited the Obstetrics Department of Linyi Maternal and Child Health Hospital from January 2019 to December 2021 were selected as the study subjects. Vaginal and rectal swabs were collected for GBS culture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!