We have introduced an improved x-ray phase-retrieval method with unprecedented speed of convergence and precision, and used it to determine with sub-Angstrom resolution the complete atomic structure of epitaxial La(2-x)Sr(x)CuO(4) ultrathin films. We focus on superconducting heterostructures built from constituent materials that are not superconducting in bulk samples. Single-phase metallic or superconducting films are also studied for comparison. The results show that this phase-retrieval diffraction method enables accurate measurement of structural modifications in near-surface layers, which may be critically important for elucidation of surface-sensitive experiments. Specifically we find that, while the copper-apical-oxygen distance remains approximately constant in single-phase films, it shows a dramatic increase from the metallic-insulating interface of the bilayer towards the surface by as much as 0.45 A. The apical-oxygen displacement is known to have a profound effect on the superconducting transition temperature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2889550PMC
http://dx.doi.org/10.1073/pnas.0914702107DOI Listing

Publication Analysis

Top Keywords

copper-apical-oxygen distance
8
superconducting
5
anomalous expansion
4
expansion copper-apical-oxygen
4
distance superconducting
4
superconducting cuprate
4
cuprate bilayers
4
bilayers introduced
4
introduced improved
4
improved x-ray
4

Similar Publications

We have introduced an improved x-ray phase-retrieval method with unprecedented speed of convergence and precision, and used it to determine with sub-Angstrom resolution the complete atomic structure of epitaxial La(2-x)Sr(x)CuO(4) ultrathin films. We focus on superconducting heterostructures built from constituent materials that are not superconducting in bulk samples. Single-phase metallic or superconducting films are also studied for comparison.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!