Human milk is the best food for all neonates; however, in pre-term infants, especially those with a very low birth weight, it may lead to insufficient intake of protein and energy. The use of fortified human milk produces adequate growth in premature infants and satisfies the specific nutritional requirements of these babies. To improve the nutritional management of pre-term infants < or =35 weeks' gestational age, an individualised human milk fortification system based on the analysis of maternal milk was evaluated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.earlhumdev.2010.01.006DOI Listing

Publication Analysis

Top Keywords

human milk
12
maternal milk
8
low birth
8
birth weight
8
pre-term infants
8
milk
5
fortification maternal
4
milk low
4
weight vlbw
4
vlbw pre-term
4

Similar Publications

Effects of Food Processing on Allergenicity.

Curr Allergy Asthma Rep

January 2025

Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.

Purpose Of Review: There is an increasing awareness among clinicians that industrial and household food processing methods can increase or decrease the allergenicity of foods. Modification to allergen properties through processing can enable dietary liberations. Reduced allergenicity may also allow for lower risk immunotherapy approaches.

View Article and Find Full Text PDF

Breast milk is essential for infant health, but the transfer of xenobiotic chemicals poses significant risks. Ethical challenges in clinical trials necessitate the use of in vitro predictive models to assess chemical exposure risks in breastfeeding infants. This study introduces an explainable machine learning model to predict the risk of chemical transfer through human milk.

View Article and Find Full Text PDF

We hypothesized that improving the fat globule structure of infant formulae based on the milk fat globule membrane (MFGM) would regulate metabolites and metabolic pathways, making it more similar to the metabolic properties of human milk. Therefore, we prepared infant formulae with different fat globule structures, including two model infant formulae (F1: fat globules surrounded by MFGM; F2: fat globules surrounded by protein) and one commercial infant formulae containing MFGM, and compared their metabolic differences with those of human milk. The number of differential metabolites between each sample and human milk reached 60 (F1), 132 (F2) and 126 (IF1).

View Article and Find Full Text PDF
Article Synopsis
  • Human milk (HBM) and bovine milk (PBM) are both sources of nutrition that involve lactose, which can be fermented by the bacteria Streptococcus mutans, potentially affecting dental health.
  • This study compares how S. mutans forms biofilms, produces acid, and buffers in HBM, plain and sweetened PBM, and infant formula (IF) through various microbiological assays.
  • Results indicated that sweetened bovine milk had the highest biofilm formation and lowest pH, while both HBM and PBM showed low cariogenicity, differing from the effects of sucrose.
View Article and Find Full Text PDF

Brucella spp. is the bacterium responsible for brucellosis, a zoonotic infection that affects humans. This disease poses significant health challenges and contributes to poverty, particularly in developing countries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!