Trypanosoma brucei contains two isoenzymes for glyceraldehyde-3-phosphate dehydrogenase: one enzyme resides in a microbody-like organelle, the glycosome; the other is found in the cytosol. Previously we have reported the characterization of the gene for the glycosomal enzyme [Michels, P. A. M., Poliszczak, A., Osinga, K. A., Misset, O., Van Beeumen, J., Wierenga, R. K., Borst, P. & Opperdoes, F. R. (1986) EMBO J. 5, 1049-1056]. Here we describe the cloning and analysis of the gene that codes for the cytosolic isoenzyme. The gene encodes a polypeptide of 330 amino acids, with a calculated molecular mass of 35440 Da. The two isoenzymes are only 55% identical. The cytosolic glyceraldehyde-3-phosphate dehydrogenase differs from the glycosomal enzyme in the following respects: (a) its subunit molecular mass is 3.4 kDa smaller due to the absence of insertions and a small C-terminal extension which are unique to the glycosomal protein; (b) the cytosolic enzyme has a lower pI (7.9, as compared to 9.3 for the glycosomal isoenzyme), which is due to a reduction in the excess of positively charged amino acids (the calculated net charges of the polypeptides are +2 and +11, respectively). We have compared the amino acid sequences of the two T. brucei glyceraldehyde-3-phosphate dehydrogenases, with 24 available sequences of the corresponding enzyme of other organisms from various phylogenetic groups. On the basis of this comparison an evolutionary tree was constructed. This analysis strongly supports the theory that T. brucei diverged early in evolution from the main eukaryotic branch of the phylogenetic tree. Further, two separate branches for the lineages leading to Trypanosoma are inferred from the amino acid sequences, suggesting that the genes for the two glyceraldehyde-3-phosphate dehydrogenases of the trypanosome are distantly related and must have been acquired independently by the trypanosomal ancestor. The branching determined with the glycosomal enzyme precedes that found with the cytosolic enzyme. The available data do not allow us to decide which of the two genes originally belonged to the trypanosome lineage and which entered the cell later by horizontal gene transfer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1432-1033.1991.tb16031.x | DOI Listing |
Biochem Pharmacol
January 2025
College of Chemistry and Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, China. Electronic address:
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is significantly upregulated in glioblastoma (GBM) and plays a crucial role in cell apoptosis and drug resistance. Micheliolide (MCL) is a natural product with a variety of antitumour activities, and the fumarate salt form of dimethylamino MCL (DMAMCL; commercial name ACT001) has been tested in clinical trials for recurrent GBM; this compound suppresses the proliferation of GBM cells by rewiring aerobic glycolysis. Herein, we demonstrated that MCL directly targets GAPDH through covalent binding to the cysteine 247 (Cys247) residue.
View Article and Find Full Text PDFClin Oral Investig
January 2025
Institute of Science and Technology, Division of Periodontics, São Paulo State University (Unesp), Av. Eng. Francisco José Longo, 777, São José dos Campos, São Paulo, 12245-000, Brazil.
Objective: This study aimed to compare the salivary protein profile in individuals with Type 2 Diabetes Mellitus (DM2) and periodontitis and their respective controls.
Methods: Eighty participants were included in the study. The four groups were formed by individuals with DM2 and periodontitis (DM2 + P, n = 20), DM2 without periodontitis (DM2, n = 20), periodontitis without DM2 (P, n = 20) and individuals without periodontitis and without DM2 (H, n = 20).
Plant Physiol
January 2025
Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany.
RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE/OXYGENASE (RUBISCO) is the most abundant enzyme and CO2 bio-sequestration system on Earth. Its in vivo activity is usually determined by 14CO2 incorporation into 3-phosphoglycerate (3PGA). However, the radiometric analysis of 3PGA does not distinguish carbon positions.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
National Research and Development Center for Eel Processing Technology, Key Laboratory of Eel Aquaculture and Processing of Fujian Province, Fujian Provincial Engineering Research Center for Eel Processing Enterprise, Changle Juquan Food Co. Ltd., Fuzhou 350200, China.
Biofilms can increase bacterial resistance to antibiotic therapies. Edwardsiella tarda with biofilm is highly resistant to antibacterial treatment, especially for the antibiotic-resistant strain. In this study, we obtained biofilm-inhibiting aptamers against antibiotic-resistant E.
View Article and Find Full Text PDFFront Plant Sci
January 2025
National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China.
Dihydroporphyrin iron (DH-Fe) is a novel plant growth regulator that plays significant roles in plant stress resistance. We found that is extremely sensitive to low temperature (LT) with a threshold of 25°C. To evaluate whether and how DH-Fe alleviates LT stress in , different DH-Fe concentrations (0, 10, 20, and 40 μg·L) were applied to estimate its effects on C and N metabolism and antioxidative capacity in grown under 20°C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!