All biomaterials, when implanted into the body, elicit an inflammatory response that evolves into fibrovascular tissue formation on and around the material. As a result, material scientists and tissue engineers should be concerned about host response to tissue-engineered constructs that have a biomaterial component, because the host response to this component will interfere with device function and reduce the lifespan of tissue engineering devices in vivo. The fibrotic response to biomaterials is not unlike pathological fibrosis of the liver, lung, kidney, and peritoneum in many ways: i) the presence of mononuclear leukocytes are common in the local environment of both pathological fibrosis and biomaterial-induced fibrosis even though cells of mesenchymal origin are responsible for laying the majority of the extracellular matrix; ii) paracrine-signaling molecules, such as transforming growth factor beta;1, are essential mediators of fibrosis, whether it is pathological or biomaterial induced; and iii) injury and/or the presence of foreign materials (including bacterial components, toxins, or man-made objects) are essential initiators for the development of the fibrotic response. This review discusses mechanisms and research methodology related to pathological fibrosis that is of interest to researchers focused on biomaterials. Potential research models for the study of fibrosis from the fields of biomaterials and drug delivery are also discussed, which may be of interest to scientists working on the pathology of fibrotic disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1615/critrevbiomedeng.v37.i3.20 | DOI Listing |
J Transl Med
January 2025
Department of Basic Medical Sciences, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
Background: The partial epithelial-mesenchymal transition (EMT) is emerging as a significant mechanism in diabetic nephropathy (DN). LOX is a copper amine oxidase conventionally thought to act by crosslinking collagen. However, the role of LOX in partial EMT and fibrotic progression in diabetic nephropathy has not been investigated experimentally.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Interventional Radiology, The First Affiliated Hospital, College of Clinical Medicine of Henan, University of Science and Technology, Jinghua Road #24, Luoyang, 471003, China.
To investigate the association between overt hepatic encephalopathy (OHE) and liver pathology after transjugular intrahepatic portosystemic shunt (TIPS) creation in cirrhotic patients. From July 2015 to April 2024, 73 patients from 4 hospitals in China who received TIPS creation and liver biopsy were retrospectively enrolled in this study. Based on whether OHE occurred within 3 months after TIPS creation, the patients were categorized into OHE (n = 29) and non-OHE (n = 44) groups.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
Automated tools for quantification of idiopathic pulmonary fibrosis (IPF) can aid in ensuring reproducibility, however their complexity and costs can differ substantially. In this retrospective study, two automated tools were compared in 45 patients with biopsy proven (12/45) and imaging-based (33/45) IPF diagnosis (mean age 74 ± 9 years, 37 male) for quantification of pulmonary fibrosis in CT. First, a tool that identifies multiple characteristic lung texture features was applied to measure multi-texture fibrotic lung (MTFL) by combining the amount of ground glass, reticulation, and honeycombing.
View Article and Find Full Text PDFNat Commun
January 2025
Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
Liver fibrosis is a critical liver disease that can progress to more severe manifestations, such as cirrhosis, yet no effective targeted therapies are available. Here, we identify that ATF4, a master transcription factor in ER stress response, promotes liver fibrosis by facilitating a stress response-independent epigenetic program in hepatic stellate cells (HSCs). Unlike its canonical role in regulating UPR genes during ER stress, ATF4 activates epithelial-mesenchymal transition (EMT) gene transcription under fibrogenic conditions.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
August 2024
Department of Nephrology, Xiangya Hospital, Central South University, Changsha 410008.
Renal fibrosis is the common pathological basis for the progressive development of chronic kidney disease (CKD) caused by various etiologies. It is characterized by the persistent deposition of extracellular matrix, leading to renal tissue damage and impaired renal function, and ultimately progressing to kidney failure. Current clinical treatments for CKD mainly focus on managing the primary diseases, with no specific drugs targeting renal fibrosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!