Janus particles, colloid-sized particles with two regions of different surface chemical composition, possess energetic interactions that depend not only on their separation but also on their orientation. Research on Janus and colloidal particles that are chemically patchy in even more complicated fashion has opened a new chapter in the colloid research field. This article highlights recent progress in both experiment and theory regarding synthesis and self-assembly of Janus particles, and tentatively outlines some areas of future opportunity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.200904094DOI Listing

Publication Analysis

Top Keywords

janus particles
8
janus
4
janus particle
4
particle synthesis
4
synthesis assembly
4
assembly janus
4
particles
4
particles colloid-sized
4
colloid-sized particles
4
particles regions
4

Similar Publications

A photocatalytic superhydrophobic coating with p-n type BiOBr/α-FeO heterojunctions applied in NO degradation.

RSC Adv

January 2025

Institute of Resources and Environmental Engineering, Shanxi University, Shanxi Yellow River Laboratory Taiyuan China

Coal combustion generates soot-type air pollution, and NO, as a typical pollutant, is the main haze-causing pollutant. The degradation of NO by means of photocatalytic superhydrophobic multifunctional coatings is both durable and economical. The precipitation method was employed to create a p-n type BiOBr/α-FeO photocatalytic binary system.

View Article and Find Full Text PDF

Programmable organization of uniform organic/inorganic functional building blocks into large-scale ordered superlattices has attracted considerable attention since the bottom-up self-organization strategy opens up a robust and universal route for designing novel and multifunctional materials with advanced applications in memory storage devices, catalysis, photonic crystals, and biotherapy. Despite making great efforts in the construction of superlattice materials, there still remains a challenge in the preparation of organic/inorganic hybrid superlattices with tunable dimensions and exotic configurations. Here, we report the spontaneous self-organization of polystyrene-tethered gold nanoparticles (AuNPs@PS) into freestanding organic/inorganic hybrid superlattices templated at the diethylene glycol-air interface.

View Article and Find Full Text PDF

Temperature-Directed Morphology Transformation Method for Precision-Engineered Polymer Nanostructures.

ACS Nano

January 2025

Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.

With polymer nanoparticles now playing an influential role in biological applications, the synthesis of nanoparticles with precise control over size, shape, and chemical functionality, along with a responsive ability to environmental changes, remains a significant challenge. To address this challenge, innovative polymerization methods must be developed that can incorporate diverse functional groups and stimuli-responsive moieties into polymer nanostructures, which can then be tailored for specific biological applications. By combining the advantages of emulsion polymerization in an environmentally friendly reaction medium, high polymerization rates due to the compartmentalization effect, chemical functionality, and scalability, with the precise control over polymer chain growth achieved through reversible-deactivation radical polymerization, our group developed the temperature-directed morphology transformation (TDMT) method to produce polymer nanoparticles.

View Article and Find Full Text PDF

The management of diabetic wounds faces significant challenges due to the excessive activation of reactive oxygen species (ROS), dysregulation of the inflammatory response, and impaired angiogenesis. A substantial body of evidence suggests that the aforementioned diverse factors contributing to the delayed healing of diabetic wounds may be associated with impaired autophagy. Impaired autophagy leads to endothelial and fibroblast dysfunction and impedes macrophage phenotypic transformation.

View Article and Find Full Text PDF

A wearable electrochemical sensor utilizing multifunctional hydrogel for antifouling ascorbic acid quantification in sweat.

Anal Chim Acta

February 2025

Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China. Electronic address:

The accurate and reliable quantification of the levels of disease markers in human sweat is of significance for health monitoring through wearable sensing technology, but the sensors performed in real sweat always suffer from biofouling that cause performance degradation or even malfunction. We herein developed a wearable antifouling electrochemical sensor based on a novel multifunctional hydrogel for the detection of targets in sweat. The integration of polyethylene glycol (PEG) into the sulfobetaine methacrylate (SBMA) hydrogel results in a robust network structure characterized by abundant hydrophilic groups on its surface, significantly enhancing the PEG-SBMA hydrogel's antifouling and mechanical properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!