A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tolerance of the developing cyanotic heart to ischemia-reperfusion injury in the rat. | LitMetric

Tolerance of the developing cyanotic heart to ischemia-reperfusion injury in the rat.

Gen Thorac Cardiovasc Surg

Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan.

Published: April 2010

Objective: Whether chronic hypoxia attenuates myocardial ischemia-reperfusion injury remains controversial because conflicting data have been reported probably due to the existence of many factors influencing the functional recovery of hearts. These factors include the differences of species, the time at which hypoxia begins, the degree of hypoxia, and so on. Regarding chronic hypoxia from birth, so far the only available data are based on findings in rabbit hearts. The purpose of this study was to describe the effect of chronic hypoxia from birth on myocardial reperfusion injury in the rat heart.

Methods: Normoxic hearts were obtained from rats housed in ambient air for 6 weeks (normoxic group); hypoxic hearts were obtained from rats housed in a hypoxic chamber (13%-14% oxygen) from birth for 6 weeks (hypoxic group). Isolated, crystalloid perfused working hearts were subjected to 30 min of global normothermic ischemia followed by 15 min of reperfusion; functional recovery was then measured in the two groups. The excretion of cyclic guanosine monophosphate (cGMP) in the coronary drainage was measured at the end of the preischemia and reperfusion periods.

Results: The percent recovery of the left ventricular developed pressure and the first derivative of left ventricular pressure were significantly better in the hypoxic group than in the normoxic group. cGMP excretion in the coronary drainage was significantly increased during both the preischemia and reperfusion periods.

Conclusion: Chronic hypoxia from birth increased myocardial tolerance to ischemia-reperfusion injury with increased cGMP synthesis in the isolated heart model in rats.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11748-009-0497-yDOI Listing

Publication Analysis

Top Keywords

chronic hypoxia
16
ischemia-reperfusion injury
12
hypoxia birth
12
injury rat
8
functional recovery
8
hearts rats
8
rats housed
8
normoxic group
8
hypoxic group
8
coronary drainage
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!