The ability of the condom wall to maintain its integrity throughout sexual intercourse is critical to its role in halting the spread of major sexually transmissible pathogens including the human immunodeficiency virus. There are three principal in vitro performance tests applied to condoms: a test for freedom from holes, an inflation test, and tensile testing. In this study we subjected condoms that had broken in use to tensile tests in order to determine any correlation between their in vivo and in vitro performance. Condoms which had broken in use showed similar tensile properties to those which had not. All passed all tensile test criteria. Thus, the inclusion of tensile testing in National Standards for condoms is not sufficient to insure strong products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0010-7824(91)90045-h | DOI Listing |
Am J Sports Med
January 2025
The Steadman Clinic, Vail, Colorado, USA.
Background: There is growing evidence that medial meniscotibial ligament (MTL) deficiency and medial meniscus extrusion may precede the development of some medial meniscus posterior root (MMPR) tears. However, no study has investigated the biomechanical consequences of MTL deficiency on the MMPR.
Hypothesis: (1) MTL deficiency leads to increased medial meniscus extrusion, (2) increased medial meniscus extrusion is correlated with increased compression and shear forces at the MMPR, and (3) MTL repair restores medial meniscus extrusion and MMPR forces to native levels.
Biofabrication
January 2025
College of Textiles & Clothing, Qingdao University, 308 Ningxia Road, Qingdao, Qingdao, Shandong, 266071, CHINA.
The design and development of advanced surgical sutures with appropriate structure and abundant bio-functions are urgently required for the chronic wound closure and treatment. In this study, an integrated technique routine combining modified electrospinning with hot stretching process was proposed and implemented to fabricate poly(L-lactic acid) (PLLA) nanofiber sutures, and the Salvia miltiorrhiza Bunge-Radix Puerariae herbal compound (SRHC) was encapsulated into PLLA nanofibers during the electrospinning process to enrich the biofunction of as-generated sutures. All the PLLA sutures loading without or with SRHC were found to exhibit bead-free and highly-aligned nanofiber structure.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Operative Dentistry, Faculty of Dentistry, Chulalongkorn University, 34 Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand.
To evaluate the effect of sulfinate salt on the bond performance of a two-step self-etch adhesive to an intracoronally bleached pulpal dentin surface. Intracoronally bleached bovine teeth were treated with or without sulfinate salt (sulfinate agent (SA): Clearfil DC activator) before 2-SEA (Clearfil SE Bond 2) application, while unbleached teeth served as the control (n = 5 teeth). Microtensile bond strength (µTBS) using the bonded surface area of 1 mm at the crosshead speed of 1 mm/min measurements after 24 h storage and thermocycles (TC), degree of conversion (DC) analyses by Raman spectroscopy (n = 3 teeth), ultrastructure of resin-dentin interface (n = 3 teeth), and intracoronally bleached pulp chamber dentin surface (n = 3 teeth) observations by scanning electron microscopy (SEM) were subsequently performed.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mining and Petroleum Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
This study utilized grab and strip testing methods to examine the relationship between three weave structures-plain, twill, and satin-and their tensile strengths in both warp and weft directions. In addition, microplastic fiber (MPF) emissions from these three weave structures were quantified at different states of the laundry process using filtration and microscopy. The grab and strip tests revealed that twill- and satin-woven fabrics exhibited higher tensile strengths in the warp direction compared to the weft orientation.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Materials Science and Engineering, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, South Korea.
This study investigates the enhancement of polypropylene (PP) composites through the incorporation of exfoliated hexagonal boron nitride (h-BN) nanosheets. The preparation process involved exfoliating h-BN in a liquid phase using a high-pressure homogenizer, followed by the coating of PP pellets with the exfoliated nanosheets using an acoustic mixer. Melt extrusion was then employed to fabricate h-BN-reinforced PP composite films.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!