Distributed simple sequence repeat markers for efficient mapping from maize public mutagenesis populations.

Theor Appl Genet

Horticultural Sciences Department, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611-0690, USA.

Published: August 2010

The genome sequence of the B73 maize inbred enables map-based cloning of genetic variants underlying phenotypes. In parallel to sequencing efforts, multiple public mutagenesis resources are being developed predominantly in the W22 and B73 inbreds. Efficient platforms to map mutants in these genetic backgrounds would aid molecular genetic analysis of the public resources. We screened 505 simple sequence repeat markers for polymorphisms between the B73, Mo17, and W22 inbreds. Using common thermocycling conditions, 47.1% of the markers showed co-dominant polymorphisms in at least one pair of inbreds. Based on these results, we identified 85 distributed markers for mapping in all three inbred pairs. For each inbred pair, the distributed set has 64-71 polymorphic markers with a mean distance of 27-29 cM between markers. The distributed markers give nearly complete coverage of the genetic map for each inbred pair. We demonstrate the utility of the marker set for efficient placement of mutants on the maize genetic map with an example mapping experiment of a seed mutant from the UniformMu mutagenesis resource. We conclude that these distributed molecular markers enable rapid mapping of phenotypic variants from public mutagenesis populations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00122-010-1341-6DOI Listing

Publication Analysis

Top Keywords

public mutagenesis
12
simple sequence
8
sequence repeat
8
markers
8
repeat markers
8
mutagenesis populations
8
distributed markers
8
inbred pair
8
genetic map
8
distributed
5

Similar Publications

Background: Chinese cabbage is a cross-pollinated crop with remarkable heterosis, and male-sterile line is an important mean to produce its hybrids. In this study, a male-sterile mutant msm7 was isolated from a Chinese cabbage DH line 'FT' by using EMS-mutagenesis.

Results: Compared with the wild-type 'FT', the anthers of mutant msm7 were completely aborted, accompanied by the defects in leaf and petal development.

View Article and Find Full Text PDF

Ion homeostasis and coordinated salt tolerance mechanisms in a barley (Hordeum vulgare L.)doubled haploid line.

BMC Plant Biol

January 2025

Shanghai Key Laboratory of Agricultural Genetics and Breeding, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs (Shanghai), Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.

Salinization poses a significant challenge in agriculture. Identifying salt-tolerant plant germplasm resources and understanding their mechanisms of salt tolerance are crucial for breeding new salt-tolerant plant varieties. However, one of the primary obstacles to achieving this goal in crops is the physiological complexity of the salt-tolerance trait.

View Article and Find Full Text PDF

As part of an ongoing effort to generate comprehensive resources for the experimental analysis of fourth chromosome genes in Drosophila melanogaster, the Fourth Chromosome Resource Project has used CRISPR mutagenesis with single guide RNAs to isolate mutations in 62 of the 80 fourth chromosome, protein-coding genes. These mutations were induced on a fourth chromosome bearing a basal FRT insertion to facilitate experimental approaches involving FLP recombinase-induced mitotic recombination. To permit straightforward comparisons among mutant stocks, most of the mutations were generated on isogenic fourth chromosomes, which were then crossed into a common genetic background.

View Article and Find Full Text PDF

The genes are important for growth in the presence of sphingosine by promoting sphingosine metabolism.

Microbiology (Reading)

January 2025

Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, USA.

Sphingoid bases, including sphingosine, are important components of the antimicrobial barrier at epithelial surfaces where they can cause growth inhibition and killing of susceptible bacteria. is a common opportunistic pathogen that is less susceptible to sphingosine than many Gram-negative bacteria. Here, we determined that the deletion of the operon reduced growth in the presence of sphingosine.

View Article and Find Full Text PDF

Background: Chromosomal inversions are underappreciated causes of rare diseases given their detection, resolution, and clinical interpretation remain challenging. Heterozygous mutations in the MEIS2 gene cause an autosomal dominant syndrome characterized by intellectual disability, cleft palate, congenital heart defect, and facial dysmorphism at variable severity and penetrance.

Case Presentation: Herein, we report a Chinese girl with intellectual disability, developmental delay, and congenital heart defect, in whom G-banded karyotype analysis identified a de novo paracentric inversion 46,XX, inv(15)(q15q26.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!