The design, synthesis and anti-mycobacterial activities of 23 conformationally-constrained indeno[2,1-c]quinolines against Mycobacterium tuberculosis H37Rv is reported. Based on a structural comparison with the anti-TB TMC207 we have devised a synthetic methodology for making new conformationally-constrained indeno[2,1-c]quinoline analogs (Fig. 1), by retaining the biologically significant quinoline and the phenyl rings in the SW and NW hemispheres, respectively. This new class of conformationally-constrained compounds has been designed such that their conformational flexibility across C4-C2' is diminished to nil by covalently locking the C4 center of the quinoline moiety in the SW hemisphere with the C2' center of the phenyl ring in the NW hemisphere, thereby decreasing the entropic penalty for their complex formation within the target protein, which will in turn give improved free-energy of stabilization of the complex. The efficacies of these anti-TB compounds were evaluated in vitro for 8/9 consecutive days using the BACTEC radiometric assay upon administration of a single-dose on day one. Compounds 11, 13, 16, 24, 30, 32 and 34 showed 85-99% growth inhibition of Mycobacterium tuberculosis. Compounds 13 and 34 however have inhibited the mycobacterial growth more effectively than others in the series, with minimum inhibitory concentrations (MIC) of 0.39 microg mL(-1) (1 microM) and 0.78 microg mL(-1) (2 microM) respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b924102g | DOI Listing |
Bioorg Med Chem Lett
January 2025
Calibr-Skaggs Institute for Innovative Medicines, a division of Scripps Research, La Jolla, CA 92037, United States. Electronic address:
Screening of the ChemDiv molecular library in cholesterol media against Mycobacterium tuberculosis (Mtb) H37Rv strain identified a novel isoxazole thiophene hit as a putative Rv1625c/Cya activator with a promising in vitro activity and good pharmacokinetic properties. Twenty-nine analogs were synthesized to assess the structure-activity relationships (SAR) to further improve potency. The most notable analog was P15, which showed an intramacrophage EC = 1.
View Article and Find Full Text PDFLancet Glob Health
January 2025
Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France. Electronic address:
People who use drugs show a higher incidence and prevalence of tuberculosis than people who do not use drugs in areas where Mycobacterium tuberculosis is endemic. However, this population is largely neglected in national tuberculosis programmes. Strategies for active case finding, screening, and linkage to care designed for the general population are not adapted to the needs of people who use drugs, who are stigmatised and difficult to reach.
View Article and Find Full Text PDFTuberculosis (Edinb)
January 2025
Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA.
Bovine tuberculosis is mainly caused by Mycobacterium bovis. Bacillus Calmette-Guérin (BCG) is an attenuated strain of M. bovis which provides variable disease protection.
View Article and Find Full Text PDFMol Divers
January 2025
Department of Laboratory Medicine, The Fourth People's Hospital of Nanhai District of Foshan City, Foshan, 528000, Guangdong, China.
Disruption of the mycobacterial redox homeostasis leads to irreversible stress induction and cell death. Hydroquinone scaffolds, as a new type of redox cycling anti-tuberculosis chemotypes, exhibit potent bactericidal activity against non-replicating, nutrient-deprived phenotypically drug-resistant bacteria. Evidences from microbiological, biochemical, and genetic studies indicate that the redox-driven mode of action relies on the reduction of quinones by type II NADH dehydrogenase (NDH2), generating reactive oxygen species (ROS) of bactericidal level.
View Article and Find Full Text PDFViruses
January 2025
College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA.
Background: HIV and tuberculosis (TB) co-infection poses a significant health challenge, particularly when involving the central nervous system (CNS), where it leads to severe morbidity and mortality. Current treatments face challenges such as drug resistance, immune reconstitution inflammatory syndrome (IRIS), and persistent inflammation. Glutathione (GSH) has the therapeutic potential to enhance treatment outcomes by improving antibiotic efficacy, reducing inflammation, and mitigating immune dysfunction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!