Microglia in ischemic brain injury.

Future Neurol

Department of Neurology, School of Medicine, University of Washington, Seattle, Washington 98195-6465, USA Tel.: +1 206 221 5362

Published: March 2010

Microglia are resident CNS immune cells that are active sensors in healthy brain and versatile effectors under pathological conditions. Cerebral ischemia induces a robust neuroinflammatory response that includes marked changes in the gene-expression profile and phenotype of a variety of endogenous CNS cell types (astrocytes, neurons and microglia), as well as an influx of leukocytic cells (neutrophils, macrophages and T-cells) from the periphery. Many molecules and conditions can trigger a transformation of surveying microglia to microglia of an alerted or reactive state. Here we review recent developments in the literature that relate to microglial activation in the experimental setting of in vitro and in vivo ischemia. We also present new data from our own laboratory demonstrating the direct effects of in vitro ischemic conditions on the microglial phenotype and genomic profile. In particular, we focus on the role of specific molecular signaling systems, such as hypoxia inducible factor-1 and Toll-like receptor-4, in regulating the microglial response in this setting. We then review histological and novel radiological data that confirm a key role for microglial activation in the setting of ischemic stroke in humans. We also discuss recent progress in the pharmacologic and molecular targeting of microglia in acute ischemic stroke. Finally, we explore how recent studies on ischemic preconditioning have increased interest in pre-emptively targeting microglial activation in order to reduce stroke severity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2853969PMC
http://dx.doi.org/10.2217/fnl.10.1DOI Listing

Publication Analysis

Top Keywords

microglial activation
12
ischemic stroke
8
microglia
6
microglial
5
microglia ischemic
4
ischemic brain
4
brain injury
4
injury microglia
4
microglia resident
4
resident cns
4

Similar Publications

Neurodegenerative diseases (NDs) are caused by progressive neuronal death and cognitive decline. Epigallocatechin 3-gallate (EGCG) is a polyphenolic molecule in green tea as a neuroprotective agent. This review evaluates the therapeutic effects of EGCG and explores the molecular mechanisms that show its neuroprotective properties.

View Article and Find Full Text PDF

Chitinase 1 (CHIT1), as a chitin-specific hydrolase, significantly influences the progression of Alzheimer's disease (AD) through microglia-associated inflammation and amyloid beta (Aβ) plaque accumulation. However, the precise mechanism of CHIT1 action in AD remains uncertain. The effects of CHIT1 on cerebral blood flow (CBF), hippocampal volume, and cognitive function were investigated in APP/PS1 mice.

View Article and Find Full Text PDF

The aging process is marked by a time-dependent deterioration in cellular functions, particularly the immune and neural systems. Understanding the phenotype acquisition of microglia, the sentinel immune cells of the brain, is crucial for understanding the nature of age-related neurological diseases. However, the specific phenotype adopted by microglia during aging remains a subject of debate and is contingent on the chosen experimental model.

View Article and Find Full Text PDF

Major depressive disorder is a prevalent mental disorder, yet its pathogenesis remains poorly understood. Accumulating evidence implicates dysregulated immune mechanisms as key contributors to depressive disorders. This review elucidates the complex interplay between peripheral and central immune components underlying depressive disorder pathology.

View Article and Find Full Text PDF

Urolithin A alleviates NLRP3 inflammasome activation and pyroptosis by promoting microglial mitophagy following spinal cord injury.

Int Immunopharmacol

January 2025

Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000 China; Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000 China. Electronic address:

Spinal cord injury (SCI) is a potentially fatal condition that often results in loss of motor and sensory functions, thereby significantly burdening global health initiatives. Urolithin A (UA), an intestinal microbial metabolite of ellagic acid, is known for its potent anti-inflammatory properties in chronic inflammation contexts. UA treatment in humans induces a molecular signature of improved mitochondrial and cellular health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!