Since Darwins' pioneering experiments, monocot coleoptiles have been used to investigate indole-3-acetic acid (IAA) production and polar transport. In a recent study, using maize coleoptiles, we first showed that the asymmetric IAA flow from the tip in response to gravistimulus directly affects the TIR/AFBs-mediated auxin signaling pathway, which results in tropic curvature. In this work, we also showed that IAA is synthesized from tryptophan (Trp) in the apical 1 mm region, and from there the synthesized IAA moves to the basal part via polar transport by ZmPIN1(s). These results clearly show the importance of the tip region in perception of gravistimulus and in transmitting the perceived information to the lower region using IAA as a messenger signal. Thus, it is concluded that IAA production and transport from the tip are key factors controlling the cell elongation rate in the lower part of the coleoptiles, by making a regulated and dynamic IAA flow net work in the coleoptiles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7080488 | PMC |
http://dx.doi.org/10.4161/psb.11493 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
School of Biological Sciences, Life Sciences Department, University of Bristol, Bristol BS8 1TQ, England.
Electric fields in terrestrial environments are used by caterpillars to detect their predators, as foraging cues by pollinators, and facilitate ballooning by spiders. This study shows that electric fields facilitate transportation and detection of hummingbirds in a guild of tropical phoretic mites. Hummingbird flower mites feed on nectar and pollen and complete their life cycle inside flowers.
View Article and Find Full Text PDFUnlabelled: infections cause over 12,000 deaths and an estimated one billion dollars in healthcare costs annually in the United States. The cell membrane is an essential structure that is important for protection from the extracellular environment, signal transduction, and transport of nutrients. The polar membrane lipids of are ∼50% glycolipids, a higher percentage than most other organisms.
View Article and Find Full Text PDFSmall
January 2025
School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China.
Perovskite quantum dots (QDs) are promising optoelectronic materials. The large surface area provides an opportunity for ligand engineering to protect the QDs, while also impeding the charge transport in the QD array. Here, the solvent-mediated growth of a hierarchical zero-dimensional (HZD) architecture between CsPbI QDs is reported.
View Article and Find Full Text PDFAdv Mater
January 2025
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
2D Dion-Jacobson (DJ) chiral perovskite materials exhibit significant promise for developing high-performance circularly polarized light (CPL) photodetectors. However, the inherently thick nature of DJ-phase 2D perovskite single crystal limits their ability to differentiate CPL photons with the two opposite polarization states. In addition, the growth of DJ-phase perovskite single crystal thin films (SCTFs) has proven challenging due to the strong interlayer electronic coupling.
View Article and Find Full Text PDFSmall
January 2025
Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, 89081, Ulm, Germany.
Separators are critical components of zinc-metal batteries (ZMBs). Despite their high ionic conductivity and excellent electrolyte retention, the widely used glass fiber (GF) membranes suffer from poor mechanical stability and cannot suppress dendrite growth, leading to rapid battery failure. Contrarily, polymer-based separators offer superior mechanical strength and facilitate more homogeneous zinc (Zn) deposition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!