Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Encysted embryos (cysts) of the brine shrimp Artemia undergo diapause, a state of profound dormancy and enhanced stress tolerance. Upon exposure to the appropriate physical stimulus diapause terminates and embryos resume development. The regulation of diapause termination and post-diapause development is poorly understood at the molecular level, prompting this study on the capacity of hydrogen peroxide (H(2)O(2)) and nitric oxide (NO) to control these processes. Exposure to H(2)O(2) and NO, the latter generated by the use of three NO generators, promoted cyst development, emergence and hatching, effects nullified by catalase and the NO scavenger 2-phenyl-4,4,5,5,-tetramethylimidazoline-1-oxyl 3-oxide (PTIO). The maximal effect of NO and H(2)O(2) on cyst development was achieved by 4 h of exposure to either chemical. NO was effective at a lower concentration than H(2)O(2) but more cysts developed in response to H(2)O(2). Promotion of development varied with incubation conditions, indicating for the first time a population of Artemia cysts potentially arrested in post-diapause and whose development was activated by either H(2)O(2) or NO. A second cyst sub-population, refractory to hatching after prolonged incubation, was considered to be in diapause, a condition broken by H(2)O(2) but not NO. These observations provide clues to the molecular mechanisms of diapause termination and development in Artemia, while enhancing the organism's value in aquaculture by affording a greater understanding of its growth and physiology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.041772 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!