Previous studies have demonstrated that Geobacter sulfurreducens requires the c-type cytochrome OmcZ, which is present in large (OmcZ(L); 50-kDa) and small (OmcZ(S); 30-kDa) forms, for optimal current production in microbial fuel cells. This protein was further characterized to aid in understanding its role in current production. Subcellular-localization studies suggested that OmcZ(S) was the predominant extracellular form of OmcZ. N- and C-terminal amino acid sequence analysis of purified OmcZ(S) and molecular weight measurements indicated that OmcZ(S) is a cleaved product of OmcZ(L) retaining all 8 hemes, including 1 heme with the unusual c-type heme-binding motif CX(14)CH. The purified OmcZ(S) was remarkably thermally stable (thermal-denaturing temperature, 94.2 degrees C). Redox titration analysis revealed that the midpoint reduction potential of OmcZ(S) is approximately -220 mV (versus the standard hydrogen electrode [SHE]) with nonequivalent heme groups that cover a large reduction potential range (-420 to -60 mV). OmcZ(S) transferred electrons in vitro to a diversity of potential extracellular electron acceptors, such as Fe(III) citrate, U(VI), Cr(VI), Au(III), Mn(IV) oxide, and the humic substance analogue anthraquinone-2,6-disulfonate, but not Fe(III) oxide. The biochemical properties and extracellular localization of OmcZ suggest that it is well suited for promoting electron transfer in current-producing biofilms of G. sulfurreducens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2893489PMC
http://dx.doi.org/10.1128/AEM.00027-10DOI Listing

Publication Analysis

Top Keywords

current production
12
c-type cytochrome
8
optimal current
8
geobacter sulfurreducens
8
purified omczs
8
reduction potential
8
omczs
7
purification characterization
4
omcz
4
characterization omcz
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!