Micro-vesicles can be released by different cell types and operate as 'safe containers' mediating inter-cellular communication. In this work we investigated whether cultured myoblasts could release exosomes. The reported data demonstrate, for the first time, that C2C12 myoblasts release micro-vesicles as shown by the presence of two exosome markers (Tsg101 and Alix proteins). Using real-time PCR analysis it was shown that these micro-vesicles, like other cell types, carry mtDNA. Proteomic characterization of the released micro-vesicle contents showed the presence of many proteins involved in signal transduction. The bioinformatics assessment of the Disorder Index and Aggregation Index of these proteins suggested that C2C12 micro-vesicles mainly deliver the machinery for signal transduction to target cells rather than key proteins involved in hub functions in molecular networks. The presence of IGFBP-5 in the purified micro-vesicles represents an exception, since this binding protein can play a key role in the modulation of the IGF-1 signalling pathway. In conclusion, the present findings demonstrate that skeletal muscle cells release micro-vesicles, which probably have an important role in the communication processes within skeletal muscles and between skeletal muscles and other organs. In particular, the present findings suggest possible new diagnostic approaches to skeletal muscle diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexcr.2010.04.006 | DOI Listing |
J Anat
January 2025
Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital - Bispebjerg-Frederiksberg, Copenhagen, Denmark.
Tendon injuries and disorders associated with mechanical tendon overuse are common musculoskeletal problems. Even though tendons play a central role in human movement, the intrinsic healing process of tendon is very slow. So far, it is known that tendon cell activity is supported by several interstitial cells within the tendon.
View Article and Find Full Text PDFChem Biol Interact
February 2025
Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea. Electronic address:
Capsaicin, a polyphenol, is known to regulate energy expenditure and thermogenesis in adipocytes and muscles. However, its role in modulating uncoupling proteins (UCPs) and adenosine triphosphate (ATP)-dependent thermogenesis in muscles remains unclear. This study investigated the mechanisms underlying the role of capsaicin in modulating the UCP- and ATP-dependent thermogenesis in C2C12 myoblasts, as well as the gastrocnemius (GM) and soleus muscles (SM) of mice.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy.
Inefficient targeting of muscle stem cells (MuSCs), also called satellite cells, represents a major bottleneck of current therapeutic strategies for muscular dystrophies, as it precludes the possibility of promoting compensatory regeneration. Here we describe a muscle-targeting delivery platform, based on gold nanoparticles, that enables the release of therapeutic oligonucleotides into MuSCs. We demonstrate that AuNPs conjugation to an aptamer against α7/β1 integrin dimers directs either local or systemic delivery of microRNA-206 to MuSCs, thereby promoting muscle regeneration and improving muscle functionality, in a mouse model of Duchenne Muscular Dystrophy.
View Article and Find Full Text PDFCells
December 2024
Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
Injured or atrophied adult skeletal muscles are regenerated through terminal differentiation of satellite cells to form multinucleated muscle fibers. Transplantation of satellite cells or cultured myoblasts has been used to improve skeletal muscle regeneration. Some of the limitations observed result from the limited number of available satellite cells that can be harvested and the efficiency of fusion of cultured myoblasts with mature muscle fibers (i.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
February 2025
Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada.
Cellular senescence has been implicated in the aging-related dysfunction of satellite cells, the resident muscle stem cell population primarily responsible for the repair of muscle fibers. Despite being in a state of permanent cell cycle arrest, these cells remain metabolically active and release an abundance of factors that can have detrimental effects on the cellular microenvironment. This phenomenon is known as the senescence-associated secretory phenotype (SASP), and its metabolic profile is poorly characterized in senescent muscle.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!