This study investigates how the microstructural properties of trabecular bone affect suture anchor performance. Seven fresh-frozen humeri were tested for pullout strength with a 5mm Arthrex Corkscrew in the greater tuberosity, lesser tuberosity, and humeral head. Micro-computed tomography analysis was performed in the three regions of interest directly adjacent to individual pullout experiments. The morphometric properties of bone mineral density (BMD), structural model index (SMI), trabecular thickness (TbTh), trabecular spacing (TbS), trabecular number (TbN), and connectivity density were compared against suture anchor pullout strength. BMD (r=0.64), SMI (r=-0.81), and TbTh (r=0.71) showed linear correlations to the pullout strength of the suture anchor with p-values<0.0001. A predictive model was developed to explain the variances in the individual BMD, SMI, and TbTh correlations. The multi-variant model of pullout strength showed a stronger relationship (r=0.86) compared to the individual experimental results. This study helps confirm BMD is a major influence on the pullout strength of suture anchors, but also illustrates the importance of local microstructure in pullout resistance of suture anchors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2900467 | PMC |
http://dx.doi.org/10.1016/j.jbiomech.2010.03.013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!