Background: The tumor suppressor TP53 and its negative regulator MDM2 play crucial roles in carcinogenesis. Previous case-control studies also revealed TP53 72Arg>Pro and MDM2 309T>G polymorphisms contribute to the risk of common cancers. However, the relationship between these two functional polymorphisms and nasopharyngeal carcinoma (NPC) susceptibility has not been explored.
Methods: In this study, we performed a case-control study between 522 NPC patients and 722 healthy controls in a Chinese population by using PCR-RFLP.
Results: We found an increased NPC risk associated with the MDM2 GG (odds ratio [OR] = 2.83, 95% confidence interval [CI] = 2.08-3.96) and TG (OR = 1.49, 95% CI = 1.16-2.06) genotypes. An increased risk was also associated with the TP53 Pro/Pro genotype (OR = 2.22, 95% CI = 1.58-3.10) compared to the Arg/Arg genotype. The gene-gene interaction of MDM2 and TP53 polymorphisms increased adult NPC risk in a more than multiplicative manner (OR for the presence of both MDM2 GG and TP53 Pro/Pro genotypes = 7.75, 95% CI = 3.53-17.58).
Conclusion: The findings suggest that polymorphisms of MDM2 and TP53 genes may be genetic modifier for developing NPC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2861659 | PMC |
http://dx.doi.org/10.1186/1471-2407-10-147 | DOI Listing |
Acta Neuropathol
January 2025
Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
The foremost feature of glioblastoma (GBM), the most frequent malignant brain tumours in adults, is a remarkable degree of intra- and inter-tumour heterogeneity reflecting the coexistence within the tumour bulk of different cell populations displaying distinctive genetic and transcriptomic profiles. GBM with primitive neuronal component (PNC), recently identified by DNA methylation-based classification as a peculiar GBM subtype (GBM-PNC), is a poorly recognized and aggressive GBM variant characterised by nodules containing cells with primitive neuronal differentiation along with conventional GBM areas. In addition, the presence of a PNC component has been also reported in IDH-mutant high-grade gliomas (HGGs), and to a lesser extent to other HGGs, suggesting that regardless from being IDH-mutant or IDH-wildtype, peculiar genetic and/or epigenetic events may contribute to the phenotypic skewing with the emergence of the PNC phenotype.
View Article and Find Full Text PDFAdv Biol Regul
December 2024
Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy.
TP53 is normally a tumor suppressor. However, it is mutated in at least 50% of human cancers. Usually, we assume that mutation of the TP53 is associated with loss of sensitivity to various drugs as in most cases wild type (WT) TP53 activity is lost.
View Article and Find Full Text PDFClin Transl Oncol
January 2025
Inflammation and Cancer Biology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India.
Globally, breast and ovarian cancers are major health concerns in women and account for significantly high cancer-related mortality rates. Dysregulations and mutations in genes like TP53, BRCA1/2, KRAS and PTEN increase susceptibility towards cancer. Here, we discuss the impact of mutations in the key regulatory gene, TP53 and polymorphisms in its negative regulator MDM2 which are reported to accelerate cancer progression.
View Article and Find Full Text PDFMolecules
January 2025
Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
MDM2 and MDM4 are major negative regulators of tumor suppressor p53. Beyond regulating p53, MDM2 possesses p53-independent activity in promoting cell cycle progression and tumorigenesis via its RING domain ubiquitin E3 ligase activity. MDM2 and MDM4 form heterodimer polyubiquitin E3 ligases via their RING domain interaction.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
Intelligent OMICS Limited, Nottingham, United Kingdom.
Gene‒gene interactions play pivotal roles in disease pathogenesis and are fundamental in the development of targeted therapeutics, particularly through the elucidation of oncogenic gene drivers in cancer. The systematic analysis of pathways and gene interactions is critical in the drug discovery process for various cancer subtypes. SPAG5, known for its role in spindle formation during cell division, has been identified as an oncogene in several cancers, although its specific impact on AML remains underexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!