Developmental hematopoiesis in normal human fetal blood.

Blood

Service de Médicine et de Biologie Foetales, Institut de Puériculture de Paris, France.

Published: June 1991

Using an easy and safe procedure for fetal blood sampling in utero, we studied 3,415 fetuses for prenatal diagnosis. Retrospectively, 2,860 normal blood samples, performed from the 18th week of gestation to the end of pregnancy, were selected. Differentials were evaluated in 732 cases. Burst-forming unit erythroid (BFU-E) and erythropoietin (Epo) were measured in 27 and 163 cases, respectively. Total nucleated cell and platelet counts did not change from the 18th to the 30th week of gestation. The lymphocytes represented the main population and the decrease of normoblastic cells made up for the increase in neutrophils. The increase of red blood cells and hemoglobin was substantial during the studied period. At mid trimester threefold more BFU-E were obtained than at birth. Epo levels remained stable throughout the pregnancy and no correlation was found between Epo and gestational age. These normal values of fetal erythropoiesis will improve our knowledge of physiology and provide a better insight into developmental hematopoiesis.

Download full-text PDF

Source

Publication Analysis

Top Keywords

developmental hematopoiesis
8
fetal blood
8
week gestation
8
hematopoiesis normal
4
normal human
4
human fetal
4
blood
4
blood easy
4
easy safe
4
safe procedure
4

Similar Publications

In vivo lineage tracing holds great potential to reveal fundamental principles of tissue development and homeostasis. However, current lineage tracing in humans relies on extremely rare somatic mutations, which has limited temporal resolution and lineage accuracy. Here, we developed a generic lineage-tracing tool based on frequent epimutations on DNA methylation, enabled by our computational method MethylTree.

View Article and Find Full Text PDF

Protocol for differentiating hematopoietic progenitor cells from human pluripotent stem cells in chemically defined monolayer culture.

STAR Protoc

January 2025

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China. Electronic address:

Human pluripotent stem cells (hPSCs) provide a powerful platform for generating hematopoietic progenitor cells (HPCs) and investigating hematopoietic development. Here, we present a protocol for maintaining hPSCs and inducing their differentiation into HPCs through the endothelial-to-hematopoietic transition (EHT) on vitronectin-coated plates. We outline steps for evaluating the efficiency of HPC generation and assessing their potential to differentiate into various hematopoietic lineages.

View Article and Find Full Text PDF

Mammalian blood cells originate from specialized 'hemogenic' endothelial (HE) cells in major arteries. During the endothelial-to-hematopoietic transition (EHT), nascent hematopoietic stem cells (HSCs) bud from the arterial endothelial wall and enter circulation, destined to colonize the fetal liver before ultimately migrating to the bone marrow. Mechanisms and processes that facilitate EHT and the release of nascent HSCs are incompletely understood, but may involve signaling from neighboring vascular endothelial cells, stromal support cells, circulating pre-formed hematopoietic cells, and/or systemic factors secreted by distal organs.

View Article and Find Full Text PDF

Spatiotemporal dynamics of fetal liver hematopoietic niches.

J Exp Med

February 2025

Immunology Department, Unit of Lymphocytes and Immunity, Institut Pasteur, Paris, France.

Embryonic hematopoietic cells develop in the fetal liver (FL), surrounded by diverse non-hematopoietic stromal cells. However, the spatial organization and cytokine production patterns of the stroma during FL development remain poorly understood. Here, we characterized and mapped the hematopoietic and stromal cell populations at early (E12.

View Article and Find Full Text PDF

The Waddington landscape was initially proposed to depict cell differentiation, and has been extended to explain phenomena such as reprogramming. The landscape serves as a concrete representation of cellular differentiation potential, yet the precise representation of this potential remains an unsolved problem, posing significant challenges to reconstructing the Waddington landscape. The characterization of cellular differentiation potential relies on transcriptomic signatures of known markers typically.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!