Cysteine dioxygenase (CDO) is a mononuclear non-heme Fe-dependent dioxygenase that catalyzes the initial step of oxidative cysteine catabolism. Its active site consists of an Fe(II) ion ligated by three histidine residues from the protein, an interesting variation on the more common 2-His-1-carboxylate motif found in many other non-heme Fe(II)-dependent enzymes. Multiple structural and kinetic studies of CDO have been carried out recently, resulting in a variety of proposed catalytic mechanisms; however, many open questions remain regarding the structure/function relationships of this vital enzyme. In this study, resting and substrate-bound forms of CDO in the Fe(II) and Fe(III) states, both of which are proposed to have important roles in this enzyme's catalytic mechanism, were characterized by utilizing various spectroscopic methods. The nature of the substrate/active site interactions was also explored using the cysteine analogue selenocysteine (Sec). Our electronic absorption, magnetic circular dichroism, and resonance Raman data exhibit features characteristic of direct S (or Se) ligation to both the high-spin Fe(II) and Fe(III) active site ions. The resulting Cys- (or Sec-) bound species were modeled and further characterized using density functional theory computations to generate experimentally validated geometric and electronic structure descriptions. Collectively, our results yield a more complete description of several catalytically relevant species and provide support for a reaction mechanism similar to that established for many structurally related 2-His-1-carboxylate Fe(II)-dependent dioxygenases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2914100 | PMC |
http://dx.doi.org/10.1021/bi100189h | DOI Listing |
Cell Rep
January 2025
Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. Electronic address:
Caenorhabditis elegans proliferates poorly in the presence of abundant Actinobacteria from its natural ecology, but it is unknown why. Here, we show how perturbed levels of hydrogen sulfide modulate the growth rate of both C. elegans and Actinobacteria.
View Article and Find Full Text PDFAndrology
January 2025
Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey.
Background: Androgen deprivation is associated with erectile dysfunction (ED). In different animal models, sulfur dioxide (SO) donors NaSO and NaHSO reduced oxidative stress, fibrosis, and inflammation which contribute to the pathogenesis of androgen deprivation-induced ED, however the effect of SO donors on ED in castrated rats were not known.
Objective: To investigate the therapeutic effect of SO donors, NaSO/NaHSO, on ED in castrated rat model.
Taurine and betaine are important nutrients in and have many important biological properties. To investigate the characteristics of taurine and betaine contents and identify SNPs associated with traits in the , we cloned the full-length cDNA of key genes in taurine and betaine (unpublished data) metabolism, determined taurine and betaine content and gene expression in different tissues and months of specimen collection, and developed SNPs in the gene coding region. We cloned the full-length cDNA of cysteine dioxygenase ( ) and cysteine sulfite decarboxylase ( ), which are key genes involved in taurine metabolism in , and found that betaine and taurine contents and the expression of key genes were regulated by seawater salinity.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biology, University of Oxford, Oxford, OX1 3RB, UK.
Plant Cysteine Oxidases (PCOs) are oxygen-sensing enyzmes that catalyse oxidation of cysteinyl residues at the N-termini of target proteins, triggering their degradation via the N-degron pathway. PCO oxygen sensitivity means that in low oxygen conditions (hypoxia), their activity reduces and target proteins are stabilised. PCO substrates include Group VII Ethylene Response Factors (ERFVIIs) involved in adaptive responses to the acute hypoxia experienced upon plant submergence, as well as Little Zipper 2 (ZPR2) and Vernalisation 2 (VRN2) which are involved in developmental processes in hypoxic niches.
View Article and Find Full Text PDFDietary betaine supplementation has been reported to alleviate the adverse effects of high-carbohydrate diets on , while the regulatory mechanism remains largely unknown. In the present study, a 79-day feeding trial was conducted with 450 juvenile (average weight 6.75 ± 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!