A new biomolecular device for investigating the interactions of ligands with constrained DNA quadruplex topologies, using surface plasmon resonance (SPR), is reported. Biomolecular systems containing an intermolecular-like G-quadruplex motif 1 (parallel G-quadruplex conformation), an intramolecular G-quadruplex 2, and a duplex DNA 3 have been designed and developed. The method is based on the concept of template-assembled synthetic G-quadruplex (TASQ), whereby quadruplex DNA structures are assembled on a template that allows precise control of the parallel G-quadruplex conformation. Various known G-quadruplex ligands have been used to investigate the affinities of ligands for intermolecular 1 and intramolecular 2 DNA quadruplexes. As anticipated, ligands displaying a pi-stacking binding mode showed a higher binding affinity for intermolecular-like G-quadruplexes 1, whereas ligands with other binding modes (groove and/or loop binding) showed no significant difference in their binding affinities for the two quadruplexes 1 or 2. In addition, the present method has also provided information about the selectivity of ligands for G-quadruplex DNA over the duplex DNA. A numerical parameter, termed the G-quadruplex binding mode index (G4-BMI), has been introduced to express the difference in the affinities of ligands for intermolecular G-quadruplex 1 against intramolecular G-quadruplex 2. The G-quadruplex binding mode index (G4-BMI) of a ligand is defined as follows: G4-BMI=K(D)(intra)/K(D)(inter), where K(D)(intra) is the dissociation constant for intramolecular G-quadruplex 2 and K(D)(inter) is the dissociation constant for intermolecular G-quadruplex 1. In summary, the present work has demonstrated that the use of parallel-constrained quadruplex topology provides more precise information about the binding modes of ligands.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.200903456DOI Listing

Publication Analysis

Top Keywords

g-quadruplex
14
intramolecular g-quadruplex
12
binding mode
12
ligands
9
template-assembled synthetic
8
synthetic g-quadruplex
8
g-quadruplex tasq
8
investigating interactions
8
interactions ligands
8
ligands constrained
8

Similar Publications

Environment-recognizing DNA nanodevices have proven promising for cellular manipulation and disease treatment, whereas how to sequentially respond to different cellular microenvironments remains a challenge. To this end, here we elaborate a logic-gated intelligent DNA nanorobot (Gi-DR) for the cascade response to inter- and intra-cellular microenvironments, thereby achieving lysosome-targeted cargo delivery for subcellular interference and tumor treatment with enhanced efficacy. Utilizing G-quadruplexes to respond to high-level K+ in cancer cell surrounding, this Gi-DR nanorobot can activate an aptamer-based transmembrane DNA machine that delivers molecular payloads to cellular lysosome.

View Article and Find Full Text PDF

It has been well accumulated that G-quadruplex (G4-DNA) has great anticancer relevance, and various heterocyclic moieties have been synthesized and examined as potent G4-DNA binders with promising anticancer activity. Here, we have synthesized a series of naphthalimide-triazole-coumarin conjugates by substituting various amines and further examine their anticancer activity against 60 human cancer cell lines at 10 μM. One and five dose concentration results reveal low values of MG-MID GI for compounds including (3.

View Article and Find Full Text PDF

Atomistic Insights Into Interaction of Doxorubicin With DNA: From Duplex to Nucleosome.

J Comput Chem

January 2025

Regional Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic.

Doxorubicin (DOX) is a widely used chemotherapeutic agent known for intercalating into DNA. However, the exact modes of DOX interactions with various DNA structures remain unclear. Using molecular dynamics (MD) simulations, we explored DOX interactions with DNA duplexes (dsDNA), G-quadruplex, and nucleosome.

View Article and Find Full Text PDF

Synthetic cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs) are promising candidates for vaccine adjuvants, because they activate immune responses through the Toll-like receptor 9 (TLR9) pathway. However, unmodified CpG ODNs are quickly degraded by serum nucleases, and their negative charge hinders cellular uptake, limiting their clinical application. Our group previously reported that guanine-quadruplex (G4)-forming CpG ODNs exhibit enhanced stability and cellular uptake.

View Article and Find Full Text PDF

Under conditions that are close to the real cellular environment, the human telomeric single-stranded overhang (∼200 nt) consisting of tens of TTAGGG repeats tends to form higher order structures of multiple G-quadruplex (G4) blocks. On account of the higher biological relevance of higher order G4 structures, ligand compounds binding to higher order G4 are significant for the drug design toward inhibiting telomerase activity. Here, we study the interaction between a cationic porphyrin derivative, 5,10,15,20-tetra{4-[2-(1-methyl-1-piperidinyl)propoxy]phenyl}porphyrin (T4), and a human telomeric G4-dimer (AG(TAG)) in the mimic intracellular molecularly crowded environment (PEG as a crowding agent) and K or Na solution (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!