A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Magnetic silica-coated sub-microspheres with immobilized metal ions for the selective removal of bovine hemoglobin from bovine blood. | LitMetric

Magnetic silica-coated magnetite (Fe(3)O(4)) sub-microspheres with immobilized metal-affinity ligands are prepared for protein adsorption. First, magnetite sub-microspheres were synthesized by a hydrothermal method. Then silica was coated on the surface of Fe(3)O(4) particles using a sol-gel method to obtain magnetic silica sub-microspheres with core-shell morphology. Next, the trichloro(4-chloromethylphenyl) silane was immobilized on them, reacted with iminodiacetic acid (IDA), and charged with Cu(2+). The obtained magnetic silica sub-microspheres with immobilized Cu(2+) were applied for the absorption of bovine hemoglobin (BHb) and the removal of BHb from bovine blood. The size, morphology, and magnetic properties of the resulting magnetic micro(nano) spheres were investigated by using scanning microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and a vibrating sample magnetometer (VSM). The measurements showed that the magnetic sub-microspheres are spherical in shape, very uniform in size with a core-shell, and are almost superparamagnetic. The saturation magnetization of silica-coated magnetite (Fe(3)O(4)) sub-microspheres reached about 33 emu g(-1). Protein adsorption results showed that the sub-microspheres had a high adsorption capacity for BHb (418.6 mg g(-1)), low nonspecific adsorption, and good removal of BHb from bovine blood. This opens a novel route for future applications in removing abundant proteins in proteomic analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.200900463DOI Listing

Publication Analysis

Top Keywords

sub-microspheres immobilized
12
bovine blood
12
magnetic silica-coated
8
sub-microspheres
8
bovine hemoglobin
8
silica-coated magnetite
8
magnetite fe3o4
8
fe3o4 sub-microspheres
8
protein adsorption
8
magnetic silica
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!