Copper deficiency in adult rats was induced by addition of silver chloride to the feed. The concentrations of silver, copper, iron, and zinc and relative activity of genes for copper transporting proteins and copper enzymes were measured in the cortex, cerebellum, hippocampus, amygdala, pituitary gland, and hypothalamus. Silver was accumulated only in the hypothalamic-pituitary system. These changes were accompanied by a decrease in the concentration of copper and increase in the contents of iron and zinc. Activity of genes for copper transport enzymes (high-affinity copper transporter; and two copper transport ATPases, ATP7A and ATP7B) and copper enzymes that were formed in the intracellular secretory pathway did not decrease in the brain of rats with copper deficiency. Relative activity of genes for intracellular copper enzymes (Cu(2+)/Zn(2+) superoxide dismutase and subunit IV of cytochrome c oxidase), concentration of immunoreactive polypeptides of superoxide dismutase, and enzymatic activity of superoxide dismutase remained unchanged under these conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10517-010-0772-zDOI Listing

Publication Analysis

Top Keywords

copper
13
activity genes
12
copper enzymes
12
superoxide dismutase
12
copper deficiency
8
iron zinc
8
relative activity
8
genes copper
8
copper transport
8
deficiency ceruloplasmin
4

Similar Publications

An unprecedented synergistic copper- and amine-catalyzed cyclization of enynone is reported. This reaction features an efficient and straightforward construction of multisubstituted tetralone through an amine-assisted regioselective oxygen atom transfer process and stereoselective intramolecular Michael addition cyclization. Under dehydrative reaction conditions, the synthesis of tetrahydronaphthylimine derivatives with ketone group tolerance is achieved, which could be challenging via traditional methods.

View Article and Find Full Text PDF

Introduction: The development of efficient and sustainable catalytic methodolo-gies has garnered considerable attention in contemporary organic synthesis.

Methods: Herein, we present a novel approach employing the Cu@DPP-SPION catalyst for the synthesis of ethyl 4-(aryl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate derivatives. This versatile catalytic system incorporates copper nanoparticles supported on 4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)benzoic acid-functionalized superparamagnetic iron oxide nanoparticles (SPIONs).

View Article and Find Full Text PDF

Two-dimensional transition metal dichalcogenides (2D TMDCs) can be combined with organic semiconductors to form hybrid van der Waals heterostructures. Specially, non-fullerene acceptors (NFAs) stand out due to their excellent absorption and exciton diffusion properties. Here, we couple monolayer tungsten diselenide (ML-WSe) with two well performing NFAs, ITIC, and IT-4F (fluorinated ITIC) to achieve hybrid architectures.

View Article and Find Full Text PDF

Copper-Catalyzed Successive Radical Reactions of Glycine Derivatives.

Org Lett

January 2025

Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.

Here, we present a three-component successive radical addition strategy for the preparation of complex noncanonical α-amino acids from easily available glycine derivatives, alkenes, and aryl sulfonium salts via a copper-catalyzed photoredox-neutral catalytic cycle. The utility of this method is further demonstrated by its application in late-stage site-selective modifications of glycine residues in short peptides. It is worth noting that only 1 mol % copper catalyst is required in this reaction, demonstrating high catalytic efficiency.

View Article and Find Full Text PDF

Wet chemical sensors autonomously sample and analyze water using chemical assays. Their internal fluidics are not susceptible to biofouling (the undesirable accumulation of microorganisms, algae, and animals in natural waters) due to the harsh chemical environment and dark conditions; however, the sample intake and filter are potentially susceptible. This paper describes the use of copper intake filters, incorporated to prevent fouling, on two different wet chemical nitrate sensors that each use different variants of the Griess assay (in particular, different nitrate reduction steps) to quantify nitrate concentrations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!