Preparation containing ultralow doses of antibodies to stem cell factor considerably activates bone marrow myelopoiesis suppressed by cyclophosphamide. This effect of the preparation is based on stimulation of proliferation of committed hemopoietic precursors and increase in functional activity of adherent elements of hemopoiesis-inducing microenvironment.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10517-010-0764-zDOI Listing

Publication Analysis

Top Keywords

preparation ultralow
8
ultralow doses
8
doses antibodies
8
antibodies stem
8
stem cell
8
cell factor
8
hemostimualting properties
4
properties preparation
4
factor cytostatic
4
cytostatic myelosuppression
4

Similar Publications

Environmentally induced sensor temperature fluctuations can distort the outputs of a sensor, reducing their stability during long-term health monitoring. Here, a passive isothermal flexible sensor is proposed by using hierarchical cellulose aerogel (HCA) as the top tribonegative layer, which allows the sensor to adapt dynamic thermal environments through both radiative cooling and heat insulation. The radiative cooling effect can cool down the temperatures of a sensor in summer, while the hollow microfibers in HCA provide ultralow thermal conductivity to reduce internal heat loss in winter.

View Article and Find Full Text PDF

High-Performance Thermoelectric Composite of BiTe Nanosheets and Carbon Aerogel for Harvesting of Environmental Electromagnetic Energy.

ACS Nano

January 2025

State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.

Intensifying the severity of electromagnetic (EM) pollution in the environment represents a significant threat to human health and results in considerable energy wastage. Here, we provide a strategy for electricity generation from heat generated by electromagnetic wave radiation captured from the surrounding environment that can reduce the level of electromagnetic pollution while alleviating the energy crisis. We prepared a porous, elastomeric, and lightweight BiTe/carbon aerogel (CN@BiTe) by a simple strategy of induced in situ growth of BiTe nanosheets with three-dimensional (3D) carbon structure, realizing the coupling of electromagnetic wave absorption (EMA) and thermoelectric (TE) properties.

View Article and Find Full Text PDF

N skeleton-regulated cobalt phthalocyanine promotes polysulfide adsorption and redox kinetics.

Chem Commun (Camb)

January 2025

Department of Chemical and Materials Engineering, University of Alberta, Edmonton Alberta T6G 2 M9, Canada.

An N skeleton substituent on cobalt phthalocyanine (CoPc) was meticulously studied to redistribute the charge in phthalocyanine, improve the mass diffusion, and promote the redox kinetics of polysulfides (LiPS), resulting in a significant ultra-low capacity decay of 0.11% at 5C over 500 cycles.

View Article and Find Full Text PDF

Small spheroids for head and neck cartilage tissue engineering.

Sci Rep

December 2024

Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.

The demand for cartilage reconstruction in the head and neck region arises frequently due to trauma, malignancies, and hereditary diseases. Traditional tissue engineering produces cartilage from a small biopsy by combining biomaterials and expanded cells. However, this top-down approach is associated with several limitations, including the non-uniform distribution of cells, lack of physiological cell-cell and cell-matrix interactions, and compromised mechanical properties and tissue architecture.

View Article and Find Full Text PDF

Ultralow k covalent organic frameworks enabling high fidelity signal transmission and high temperature electromechanical sensing.

Nat Commun

December 2024

Key Laboratory of Advanced Polymeric Materials of Shanghai, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, P. R. China.

As integrated circuits have developed towards the direction of complexity and miniaturization, there is an urgent need for low dielectric constant materials to effectively realize high-fidelity signal transmission. However, there remains a challenge to achieve ultralow dielectric constant and ultralow dielectric loss over a wide temperature range, not to mention having excellent thermal conductivity and processability concurrently. We herein prepare dual-linker freestanding covalent organic framework films with tailorable fluorine content via interfacial polymerization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!