Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.21.002660 | DOI Listing |
Ow7ing to the flat center and steep edge, the flat-top beam is widely used in the fields of micromachining and optical image processing. Here, we propose an efficient scheme to generate a picosecond pulsed flat-top beam in a mode-locking all-fiber laser. After utilizing an orthogonal polarization method for complete incoherence and a high-precision all-fiber optical delay line (ODL) for rigorous time synchronization, the pulsed fundamental mode (LP) and the pulsed vortex beam (VB) are superimposed to generate a pulsed flat-top beam.
View Article and Find Full Text PDFWe demonstrate a 2.08 µm all-polarization-maintaining (PM) holmium-doped fiber oscillator using a hybrid mode-locking technique with nonlinear polarization evolution (NPE) and a semiconductor saturable absorber mirror (SESAM). This oscillator features a linear structure with dual output ports.
View Article and Find Full Text PDFWe have proposed and demonstrated the generation of a high-repetition-rate ultrashort pulse with long-term stability and low noise based on a harmonic mode-locked (HML) figure-9 fiber laser. Different HML orders from the 2nd to the 13th are generated by adjusting the pump power, net dispersion, and wave plate angles. A 2-GHz HML pulse is obtained with a 155-MHz fundamental repetition rate in a Yb-doped fiber laser, and the corresponding supermode suppression level is as high as 50 dB.
View Article and Find Full Text PDFExperimental and numerical study has been performed for three techniques of mode-locking in all-fiber Holmium laser. We have compared the fundamental repetition rate pulsed generation for mode-locking based on: nonlinear polarization evolution, polymer-free single-walled carbon nanotubes, and hybrid mode-locking. Experimental and numerical simulation results demonstrated the shortest pulse duration and maximum spectrum width for mode-locking based on the nonlinear polarization evolution: 1.
View Article and Find Full Text PDFA method to improve the frequency stability of microwave frequency comb (MFC) signals generated by an actively mode-locked optoelectronic oscillator (AML-OEO) is proposed and experimentally demonstrated. In the experiment, fundamental mode locking in the constructed AML-OEO is achieved, producing MFC signals with a center frequency of 2.165 GHz and a repetition rate of 396.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!