Pharmacological protection from myocardial reperfusion injury, despite plenty of approaches, has still not been realized in humans. We studied the putative infarct size (IS)-sparing capacity of poly(ADP-ribose)polymerase inhibitor, INO-1001, and focused on cardiac functional recovery during reperfusion. Male farm-bred Landrace pigs were subjected to 1-h left anterior descending coronary artery occlusion followed by 3 h of reperfusion (control). Infarct size was determined by triphenyltetrazolium chloride/Evans blue staining. Plasma markers of myocardial injury (troponin T, creatine kinase, lactate dehydrogenase) were determined upon protocol completion. Cardiac function was continuously assessed via pulmonary and femoral artery catheters. INO-1001 (1 mg/kg) was administered upon reperfusion in the treatment group. As a positive control, untreated pigs were subjected to ischemic preconditioning (10-min left anterior descending coronary artery occlusion followed by 15-min reperfusion before the intervention). Ischemic preconditioning reduced myocardial damage reflected by a smaller IS and lower plasma markers of myocardial injury. INO-1001 did not reduce IS but significantly improved functional recovery (increased stroke volume, cardiac index, and mixed venous oxygen saturation) during reperfusion compared with vehicle-treated control and ischemic preconditioning. Although we could not confirm the IS-sparing capacities of poly(ADP-ribose)polymerase inhibitor, INO-1001, the drug holds the potential of hemodynamic improvement during reperfusion.

Download full-text PDF

Source
http://dx.doi.org/10.1097/SHK.0b013e3181c4fb08DOI Listing

Publication Analysis

Top Keywords

inhibitor ino-1001
12
infarct size
12
ischemic preconditioning
12
cardiac function
8
reperfusion
8
polyadp-ribosepolymerase inhibitor
8
functional recovery
8
pigs subjected
8
left anterior
8
anterior descending
8

Similar Publications

PARP-1 inhibition protects the diabetic heart through activation of SIRT1-PGC-1α axis.

Exp Cell Res

December 2018

Cardiac Research Laboratory, Felsenstein Medical Research Institute Petah-Tikva, Sackler Faculty of Medicine, Tel Aviv University, Israel. Electronic address:

Unlabelled: Type 2 diabetes mellitus (DM2) follows impaired glucose tolerance in obesity and is frequently associated with hypertension, causing adverse myocardial remodelling and leading to heart failure. The DNA bound protein PARP (poly ADP ribose) polymerase catalyses a post translational modification (polymerization of negatively charged ADP-ribose chains) of nuclear proteins. PARP-1 activation is NAD dependent and takes part in DNA repair and in chromatin remodelling and has a function in transcriptional regulation, intracellular trafficking and energy metabolism.

View Article and Find Full Text PDF

Poly (ADP-ribose) polymerases (PARPs) are enzymes that catalyze ADP-ribose units transfer from NAD to their substrate proteins. It has been observed that PARP-1 is able to increase both post-ischemic and excitotoxic neuronal death. In fact, we have previously shown that, INO-1001, a PARP-1 inhibitor, displays a neuroprotective effect in the R6/2 model of Huntington's disease (HD).

View Article and Find Full Text PDF

Objectives: Heart transplantation is the standard treatment in end-stage heart failure and at shortage of cardiac allografts is its major limiting factor. Striving to optimize the use of this limited resource, the aspect that long distance procurement may increase the available donor pool must be taken into consideration. As poly(ADP-ribose)polymerase (PARP)-activation has been identified as a key pathway of reperfusion injury, we assessed the hypothesis that its inhibition would allow an extension of cold preservation time and protect the graft against ischaemia/reperfusion injury.

View Article and Find Full Text PDF

Poly (ADP-ribose) polymerase 1 (PARP-1) is a nuclear enzyme that is involved in physiological processes as DNA repair, genomic stability, and apoptosis. Moreover, published studies demonstrated that PARP-1 mediates necrotic cell death in response to excessive DNA damage under certain pathological conditions. In Huntington's disease brains, PARP immunoreactivity was described in neurons and in glial cells, thereby suggesting the involvement of apoptosis in HD.

View Article and Find Full Text PDF

Another "string to the bow" of PJ34, a potent poly(ADP-Ribose)polymerase inhibitor: an antiplatelet effect through P2Y12 antagonism?

PLoS One

June 2015

EA4475-"Pharmacologie de la Circulation Cérébrale", Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Comue Sorbonne Paris Cité, Paris, France.

Background: Neuro- and vasoprotective effects of poly(ADP-ribose)polymerase (PARP) inhibition have been largely documented in models of cerebral ischemia, particularly with the potent PARP inhibitor PJ34. Furthermore, after ischemic stroke, physicians are faced with incomplete tissue reperfusion and reocclusion, in which platelet activation/aggregation plays a key role. Data suggest that certain PARP inhibitors could act as antiplatelet agents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!