The pathogenesis and treatment of nonalcoholic steatohepatitis (NASH) are not well established. Feeding a diet deficient in both methionine and choline (MCD) is one of the most common models of NASH, which is characterized by steatosis, mitochondrial dysfunction, hepatocellular injury, oxidative stress, inflammation, and fibrosis. However, the individual contribution of the lack of methionine and choline in liver steatosis, advanced pathology and impact on mitochondrial S-adenosyl-L-methionine (SAM) and glutathione (GSH), known regulators of disease progression, has not been specifically addressed. Here, we examined the regulation of mitochondrial SAM and GSH and signs of disease in mice fed a MCD, methionine-deficient (MD), or choline-deficient (CD) diet. The MD diet reproduced most of the deleterious effects of MCD feeding, including weight loss, hepatocellular injury, oxidative stress, inflammation, and fibrosis, whereas CD feeding was mainly responsible for steatosis, characterized by triglycerides and free fatty acids accumulation. These findings were preceded by MCD- or MD-mediated SAM and GSH depletion in mitochondria due to decreased mitochondrial membrane fluidity associated with a lower phosphatidylcholine/phosphatidylethanolamine ratio. MCD and MD but not CD feeding resulted in increased ceramide levels by acid sphingomyelinase. Moreover, GSH ethyl ester or SAM therapy restored mitochondrial GSH and ameliorated hepatocellular injury in mice fed a MCD or MD diet. Thus, the depletion of SAM and GSH in mitochondria is an early event in the MCD model of NASH, which is determined by the lack of methionine. Moreover, therapy using permeable GSH prodrugs may be of relevance in NASH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2881778PMC
http://dx.doi.org/10.1074/jbc.M109.099333DOI Listing

Publication Analysis

Top Keywords

methionine choline
12
hepatocellular injury
12
sam gsh
12
nonalcoholic steatohepatitis
8
impact mitochondrial
8
mitochondrial s-adenosyl-l-methionine
8
injury oxidative
8
oxidative stress
8
stress inflammation
8
inflammation fibrosis
8

Similar Publications

Objective: Non-alcoholic steatohepatitis (NASH) is a progressive liver disease with lipid accumulation, inflammation, and liver fibrosis. Ponatinib, a third-generation tyrosine kinase inhibitors for the treatment of chronic myeloid leukemia, was found to improve metabolic disorders in mice. However, the role of ponatinib in liver inflammation and fibrosis remains to be elucidated.

View Article and Find Full Text PDF

Introduction: , a traditional medicinal plant, is renowned for its therapeutic properties, including the promotion of anti-inflammatory and bile secretion. Notably, it has demonstrated efficacy in the treatment of jaundice. This study aimed to evaluate the potential of -derived exosomes (ACDEs) as a novel therapeutic approach in non-alcoholic fatty liver disease (NAFLD).

View Article and Find Full Text PDF

A new ursane triterpenoid, actichinone (3-oxo-2α,24-dihydroxyurs-12-en-28-oic acid, 1), was isolated from the roots of a kiwi plant Actinidia chinensis Planch, together with 18 known triterpenoids (2-19). The structure of actichinone (1) was established by extensive spectroscopic analysis. Actichinone (1) showed the most potent lipid-lowering activity in the oleic acid (OA)-induced primary mouse hepatocytes and the structure-activity relationships (SARs) were analyzed.

View Article and Find Full Text PDF

Picrosides-rich fraction from Picrorhiza kurroa attenuates steatohepatitis in zebrafish and mice by modulating lipid metabolism and inflammation.

Phytomedicine

January 2025

Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India. Electronic address:

Background: Non-alcoholic steatohepatitis (NASH) has become a serious public health concern with high global prevalence. The lack of safe and efficient treatment for the condition demands exploring new therapeutic solutions.

Purpose: In the present study, we investigated the protective efficacy of picrosides-rich fraction (PF) from Picrorhiza kurroa against steatohepatitis and revealed the molecular mechanism of action.

View Article and Find Full Text PDF

Objectives: To investigate the regulatory role of nucleotide-bound oligomerized domain-like receptor containing pyrin-domain protein 6 (NLRP6) in liver lipid metabolism and non-alcoholic fatty liver disease (NAFLD).

Methods: Mouse models with high-fat diet (HFD) feeding for 16 weeks (=6) or with methionine choline-deficient diet (MCD) feeding for 8 weeks (=6) were examined for the development of NAFLD using HE and oil red O staining, and hepatic expressions of NLRP6 were detected with RT-qPCR, Western blotting, and immunohistochemical staining. Cultured human hepatocytes (LO2 cells) with adenovirus-mediated NLRP6 overexpression or knock-down were treated with palmitic acid (PA) in the presence or absence of compound C (an AMPK inhibitor), and the changes in cellular lipid metabolism were examined by measuring triglyceride, ATP and β-hydroxybutyrate levels and using oil red staining, RT-qPCR, and Western blotting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!