The mitochondrial genome of the pathogenic yeast Candida subhashii: GC-rich linear DNA with a protein covalently attached to the 5' termini.

Microbiology (Reading)

Department of Biochemistry, Comenius University, Faculty of Natural Sciences, Mlynska dolina CH-1, 842 15 Bratislava, Slovak Republic.

Published: July 2010

As a part of our initiative aimed at a large-scale comparative analysis of fungal mitochondrial genomes, we determined the complete DNA sequence of the mitochondrial genome of the yeast Candida subhashii and found that it exhibits a number of peculiar features. First, the mitochondrial genome is represented by linear dsDNA molecules of uniform length (29 795 bp), with an unusually high content of guanine and cytosine residues (52.7 %). Second, the coding sequences lack introns; thus, the genome has a relatively compact organization. Third, the termini of the linear molecules consist of long inverted repeats and seem to contain a protein covalently bound to terminal nucleotides at the 5' ends. This architecture resembles the telomeres in a number of linear viral and plasmid DNA genomes classified as invertrons, in which the terminal proteins serve as specific primers for the initiation of DNA synthesis. Finally, although the mitochondrial genome of C. subhashii contains essentially the same set of genes as other closely related pathogenic Candida species, we identified additional ORFs encoding two homologues of the family B protein-priming DNA polymerases and an unknown protein. The terminal structures and the genes for DNA polymerases are reminiscent of linear mitochondrial plasmids, indicating that this genome architecture might have emerged from fortuitous recombination between an ancestral, presumably circular, mitochondrial genome and an invertron-like element.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3068681PMC
http://dx.doi.org/10.1099/mic.0.038646-0DOI Listing

Publication Analysis

Top Keywords

mitochondrial genome
20
yeast candida
8
candida subhashii
8
protein covalently
8
dna polymerases
8
mitochondrial
7
dna
6
genome
6
linear
5
genome pathogenic
4

Similar Publications

Numerous observational studies have highlighted associations between mitochondrial dysfunction and schizophrenia (SCZ), yet the causal relationship remains elusive. This study aims to elucidate the causal link between mitochondria-associated proteins and SCZ. We used summary data from a genome-wide association study (GWAS) of 66 mitochondria-associated proteins in 3,301 individuals from Europe, as well as a GWAS on the large, multi-ethnic ancestry of SCZ, involving 76,755 cases and 243,649 controls.

View Article and Find Full Text PDF

Cell-free DNA release following psychosocial and physical stress in women and men.

Transl Psychiatry

January 2025

Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Universitätsstraße 150, Bochum, Germany.

Cell-free DNA (cfDNA) is continuously shed by all cells in the body, but the regulation of this process and its physiological functions are still largely unknown. Previous research has demonstrated that both nuclear (cf-nDNA) and mitochondrial (cf-mtDNA) cfDNA levels increase in plasma in response to acute psychosocial and physical stress in males. This study further investigated these findings by testing 31 female participants (16 using oral hormonal contraception and 15 not using oral hormonal contraception), and the results were subsequently compared with those of 16 male participants.

View Article and Find Full Text PDF

The 40S ribosomal subunit recycling pathway is an integral link in the cellular quality control network, occurring after translational errors have been corrected by the ribosome-associated quality control (RQC) machinery. Despite our understanding of its role, the impact of translation quality control on cellular metabolism remains poorly understood. Here, we reveal a conserved role of the 40S ribosomal subunit recycling (USP10-G3BP1) complex in regulating mitochondrial dynamics and function.

View Article and Find Full Text PDF

Micronutrient-Antioxidant Therapy and Male Fertility Improvement During ART Cycles.

Nutrients

January 2025

ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Picardie University Jules Verne, CHU Sud, 80000 Amiens, France.

Today, accumulating evidence highlights the impact of oxidative stress (OS) on semen quality. It is considered to be a key factor contributing to the decline in male fertility. OS is detected in 30-80% of men with infertility, highlighting its strong association with impaired reproductive function and with clinical outcomes following the use of assisted reproductive technologies.

View Article and Find Full Text PDF

(1) Background: is a major parasite of large porpoises and whales and has been classified in the Habronematoidea family. However, there has been a great controversy regarding its classification. Mitochondria have an important function in revealing taxonomic and evolutionary history.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!