A synthetic peptide derived from the phosphorylation site in the beta-subunit of phosphorylase kinase (RTKRSGSVYEPLKI) is an efficient substrate for rat brain protein kinase C: Km = 18 +/- 2 microM and Vmax = 2.1 +/- 0.1 mumol/min/mg. The phosphorylation of the peptide, which occurs at Ser7, can be followed by four independent procedures. 1. Standard measurement of 32P incorporation. 2. Reverse phase HPLC in a gradient system containing 0.1 M ammonium sulfate in the stationary phase. 3. Continuous fluorometric monitoring of the changes in intrinsic peptide fluorescence. 4. Continuous fluorometric determination of NADH oxidation in a coupled enzyme assay.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0006-291x(91)90450-lDOI Listing

Publication Analysis

Top Keywords

continuous fluorometric
12
protein kinase
8
fluorometric monitoring
8
characterization substrate
4
substrate protein
4
kinase assay
4
assay continuous
4
monitoring high
4
high performance
4
performance liquid
4

Similar Publications

Development of a Nanobody-Alkaline Phosphatase Fusion Protein for Detection of SARS-CoV-2 Spike Protein in a Fluorescence Enzyme Immunoassay.

Anal Chem

December 2024

College of Stomatology, Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China.

The continuous spread and evolution of severe acute respiratory symptom coronavirus 2 (SARS-CoV-2) necessitate the development of convenient and rapid detection methods. In this study, we developed a fluorescence enzyme immunoassay (FEIA) based on a nanobody (Nb)-alkaline phosphatase (ALP) fusion protein for detection of SARS-CoV-2 spike protein. The genetically modified anti-SARS-CoV-2 S-RBD Nb, Nb61, gene was fused with the ALP gene sequences via a flexible linker.

View Article and Find Full Text PDF

DNA Reaction Network Central Controller for Dynamic Spatiotemporal Logical Assembly and Its Application for Rational Design of Fluorometric/Electrical Biosensing.

ACS Sens

December 2024

College of Food Science and Technology, Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering/Research Center of Food Safety Risk Assessment and Control, Northwest University, Xi'an, Shaanxi 710069, China.

This work introduces a fluorometric/electrical dual-biosensing logic system based on a DNA reaction network (DRN). This system was used to spatiotemporally modulate the kinetic behavior of DNA nanostructures. The system, acting as a programmable and modulative central controller introduced to implement, enabled the monitoring of the target gliotoxin.

View Article and Find Full Text PDF

The Kinetics of Carbon-Carbon Bond Formation in Metazoan Fatty Acid Synthase and Its Impact on Product Fidelity.

Angew Chem Int Ed Engl

January 2025

Institute of Organic Chemistry and Chemical Biology, Buchmann Institute of Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.

Fatty acid synthase (FAS) multienzymes are responsible for de novo fatty acid biosynthesis and crucial in primary metabolism. Despite extensive research, the molecular details of the FAS catalytic mechanisms are still poorly understood. For example, the β-ketoacyl synthase (KS) catalyzes the fatty acid elongating carbon-carbon-bond formation, which is the key catalytic step in biosynthesis, but factors that determine the speed and accuracy of his reaction are still unclear.

View Article and Find Full Text PDF

A novel simple fluorometric protease assay for monitoring hydrolysis of proteins in real time.

Anal Biochem

January 2025

Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia; Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova 39, SI-1000, Ljubljana, Slovenia. Electronic address:

Measuring the activity of proteases is essential for investigating both the physiological functions and commercial applications of these enzymes. In contrast to the numerous protease assays that are based on chromogenic or fluorogenic peptide substrates, there is a lack of approaches to monitor degradation of proteins in real time. Here we report a protease assay where SYPRO Orange is employed as a fluorogenic probe to follow proteolysis.

View Article and Find Full Text PDF

Pathologies in adipose (fat) tissue function are linked with human diseases such as diabetes, obesity, metabolic syndrome, and cancer. Dynamic, rapid release of metabolites has been observed in adipocyte cells and tissue, yet higher temporal resolution is needed to adequately study this process. In this work, a microfluidic device with precise and regular valve-automated droplet sampling, termed a microfluidic analog-to-digital converter (μADC), was used to sample secretions from ∼0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!