Viscoelastic modeling with interfacial slip of a protein monolayer electrode-adsorbed on an acoustic wave biosensor.

Langmuir

Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.

Published: July 2010

Transverse-shear mode acoustic wave devices have been used as real-time, label-free detectors of conformational shifts in biomolecules on surfaces. However, material changes in the biochemical monolayers and coupling between the substrate and the surrounding liquid make it difficult to isolate the desired signal, so an understanding of these phenomena is required. An important step in this understanding is knowledge of the material properties of the linker layer that attaches a biochemically selective molecule to the gold surface, in our case, neutravidin. With the goal of obtaining material properties for a neutravidin monolayer, for use in future studies, neutravidin adsorption to the gold surface of an acoustic wave biosensor is described as a viscoelastic monolayer using one-dimensional modeling. Neutravidin is described as forming hydrated, viscoelastic monolayers, and slip is allowed at all interfaces. An impedance model is numerically fit to experimental values using a two-parameter minimization algorithm and values for the shear modulus of the neutravidin monolayer, in agreement with literature values for similar proteins, are obtained. Slip is found on the electrode surface prior to neutravidin adsorption. These results will be used for future modeling studies involving this protein as a linker protein.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la100798cDOI Listing

Publication Analysis

Top Keywords

acoustic wave
12
wave biosensor
8
material properties
8
gold surface
8
neutravidin monolayer
8
neutravidin adsorption
8
neutravidin
6
viscoelastic modeling
4
modeling interfacial
4
interfacial slip
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!