Global estimates indicate the oceans are responsible for approximately half of the carbon dioxide fixed on Earth. Organisms < or =5 microm in size dominate open ocean phytoplankton communities in terms of abundance and CO(2) fixation, with the cyanobacterial genera Prochlorococcus and Synechococcus numerically the most abundant and more extensively studied compared with small eukaryotes. However, the contribution of specific taxonomic groups to marine CO(2) fixation is still poorly known. In this study, we show that among the phytoplankton, small eukaryotes contribute significantly to CO(2) fixation (44%) because of their larger cell volume and thereby higher cell-specific CO(2) fixation rates. Within the eukaryotes, two groups, herein called Euk-A and Euk-B, were distinguished based on their flow cytometric signature. Euk-A, the most abundant group, contained cells 1.8+/-0.1 microm in size while Euk-B was the least abundant but cells were larger (2.8+/-0.2 microm). The Euk-B group comprising prymnesiophytes (73+/-13%) belonging largely to lineages with no close cultured counterparts accounted for up to 38% of the total primary production in the subtropical and tropical northeast Atlantic Ocean, suggesting a key role of this group in oceanic CO(2) fixation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/ismej.2010.36 | DOI Listing |
mSystems
January 2025
Department of Chemical and P. Engineering, Research and Innovation Centre on CO2 and H2 (RICH), Khalifa University, Abu Dhabi, United Arab Emirates.
A comprehensive optimization of known prokaryotic autotrophic carbon dioxide (CO) fixation pathways is presented that evaluates all their possible variants under different environmental conditions. This was achieved through a computational methodology recently developed that considers the trade-offs between energy efficiency (yield) and growth rate, allowing us to evaluate candidate metabolic modifications for microbial conversions. The results revealed the superior configurations in terms of both yield (efficiency) and rate (driving force).
View Article and Find Full Text PDFACS Nano
January 2025
Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland.
Enzyme immobilization is an efficient and cost-effective approach to recovering, stabilizing, and enhancing enzyme catalytic properties. It is a challenge, however, for coimmobilized multiple enzymes to perform consecutive reactions without being inactivated under similar conditions. Here, we present a facile enzyme immobilization platform using β-lactoglobulin amyloid fibril hydrogels.
View Article and Find Full Text PDFChem Soc Rev
January 2025
Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
Solar-driven photocatalytic technology holds significant potential for addressing energy crisis and mitigating global warming, yet is limited by light absorption, charge separation, and surface reaction kinetics. The past several years has witnessed remarkable progress in optimizing photocatalysis electron spin control. This approach enhances light absorption through energy band tuning, promotes charge separation by spin polarization, and improves surface reaction kinetics strengthening surface interaction and increasing product selectivity.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata (IISER Kolkata), Campus Rd, Mohanpur, Haringhata Farm, West Bengal 741246, India.
Utilization of carbon dioxide (CO) as a C1 feedstock to synthesize value-added chemicals using a catalyst made from earth-abundant elements and under mild conditions is a sustainable approach toward carbon neutrality but difficult to achieve. Herein, the CoAlO/AlO composite catalyst is developed and used for the light-driven epoxide to value-added cyclic carbonate conversion using CO. CoAlO/AlO composite catalysts (% Co-AlO) are prepared by calcining cobalt-incorporated Al-oxy-hydroxide at 500 °C under an air atmosphere.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Electronic Science and Technology of China, No.2006 Xiyuan Road, 611731, Chengdu, CHINA.
Li-CO2 batteries demonstrate promising prospects in terms of high-density energy storage and efficient CO2 fixation. However, their practical application is impeded by sluggish reaction kinetics and leakage of volatile and flammable organic electrolytes, especially for high temperature application scenarios, leading to large polarization and limited cycling stability. Herein, we fabricate a highly rechargeable and stable Li-CO2 battery with high temperature adaptability by employing fluorine-substituted graphdiyne (FGDY) as cathode catalysts and imidazolium-based ionic liquid as electrolyte solvents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!