Many members of the nucleotide-binding and oligomerization domain (NOD)- and leucine-rich-repeat-containing protein (NLR) family play important roles in pathogen recognition and inflammation. However, we previously reported that human PYNOD/NLRP10, an NLR-like protein consisting of a pyrin domain and a NOD, inhibits inflammatory signal mediated by caspase-1 and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) in reconstitution experiments using HEK293 cells. In this study, we investigated the molecular mechanism of PYNOD's anti-inflammatory activity in vitro and its expression and function in mice. Human PYNOD inhibited the autoprocessing of caspase-1 and caspase-1-mediated IL-1beta processing and suppressed the aggregation of ASC, a hallmark of ASC activation. Interestingly, the NOD of human PYNOD was sufficient to inhibit caspase-1-mediated IL-1beta secretion, whereas its pyrin domain was sufficient to inhibit ASC-mediated NF-kappaB activation and apoptosis and to reduce ASC's ability to promote caspase-1-mediated IL-1beta production. Mouse PYNOD protein was detected in the skin, tongue, heart, colon, peritoneal macrophages, and several cell lines of hematopoietic and myocytic lineages. Mouse PYNOD colocalized with ASC aggregates in LPS + R837-stimulated macrophages; however, unlike human PYNOD, mouse PYNOD failed to inhibit ASC aggregation. Macrophages and neutrophils from PYNOD-transgenic mice exhibited reduced IL-1beta processing and secretion upon microbial infection, although mouse PYNOD failed to inhibit caspase-1 processing, which was inhibited by caspase-4 inhibitor z-LEED-fluoromethylketone. These results suggest that mouse PYNOD colocalizes with ASC and inhibits caspase-1-mediated IL-1beta processing without inhibiting caspase-4 (mouse caspase-11)-mediated caspase-1 processing. Furthermore, PYNOD-transgenic mice were resistant to lethal endotoxic shock. Thus, PYNOD is the first example of an NLR that possesses an anti-inflammatory function in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.0900779DOI Listing

Publication Analysis

Top Keywords

mouse pynod
20
caspase-1-mediated il-1beta
16
human pynod
12
il-1beta processing
12
pynod
10
anti-inflammatory activity
8
pyrin domain
8
sufficient inhibit
8
pynod failed
8
failed inhibit
8

Similar Publications

Characterization of Innate and Adaptive Immune Responses in PYNOD-Deficient Mice.

Immunohorizons

April 2018

Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan;

PYNOD (also called NLRP10) is a member of the nucleotide-binding domain and leucine-rich repeat containing family. Many members of this family play important roles in the activation and/or regulation of immune and inflammatory responses. We previously showed that PYNOD inhibits the IL-1β secretion in response to microbial infection in PYNOD-transgenic mice.

View Article and Find Full Text PDF

Cigarette smoke-induced inflammation: NLRP10-mediated mechanisms.

Toxicology

April 2018

Laboratory of Pulmonary Immuno-toxicology, Environmental Toxicology Department, Health Research Center, College of Sciences and Engineering, Southern University and A&M College, Baton Rouge, LA, 70813, United States; Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States. Electronic address:

Chronic obstructive pulmonary disease (COPD) is a progressive, life-threatening disease that causes irreversible lung damage. Cigarette smoking is the chief etiologic factor for the commencement of this condition. Despite constant efforts to develop therapeutic interventions and to ascertain the molecular mechanism leading to the pathophysiology of this disease, much remains unknown.

View Article and Find Full Text PDF

The NMR solution structure of AIM2 PYD domain from Mus musculus reveals a distinct α2-α3 helix conformation from its human homologues.

Biochem Biophys Res Commun

May 2015

Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, China; College of Chemistry and Molecular Engineering, Peking University, Beijing, China. Electronic address:

The inflammasome is a key component of the innate immune system providing the initial defense against invading organisms. Failure of inflammasome formation is the main reason for many innate and acquired immune diseases. Cytosolic protein absent in melanoma 2 (AIM2) has been reported to play an essential role in double-stranded DNA (dsDNA) sensing and inflammasome formation in response to viruses or bacteria infection.

View Article and Find Full Text PDF

NLRPs (Nucleotide-binding domain, leucine-rich repeat and pyrin domain containing proteins) are a family of pattern-recognition receptors (PRRs) that sense intracellular microbial components and endogenous stress signals. NLRP10 (also known as PYNOD) is a unique NLRP member characterized by a lack of the putative ligand-binding leucine-rich repeat domain. Recently, human NLRP10 has been shown to inhibit the self-association of ASC into aggregates and ASC-mediated procaspase-1 processing.

View Article and Find Full Text PDF

NLRs (nucleotide-binding domain leucine-rich-repeat-containing receptors; NOD-like receptors) are a class of pattern recognition receptor (PRR) that respond to host perturbation from either infectious agents or cellular stress. The function of most NLR family members has not been characterized and their role in instructing adaptive immune responses remains unclear. NLRP10 (also known as PYNOD, NALP10, PAN5 and NOD8) is the only NLR lacking the putative ligand-binding leucine-rich-repeat domain, and has been postulated to be a negative regulator of other NLR members, including NLRP3 (refs 4-6).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!