Kinetoplastid RNA (k-RNA) editing is a complex process in the mitochondria of kinetoplastid protozoa, including Trypanosoma brucei, that involves the guide RNA-directed insertion and deletion of uridines from precursor-mRNAs to produce mature, translatable mRNAs. k-RNA editing is performed by multiprotein complexes called editosomes. Additional non-editosome components termed k-RNA-editing accessory factors affect the extent of editing of specific RNAs or classes of RNAs. The T. brucei p22 protein was identified as one such accessory factor. Here we show that p22 contributes to cell growth in the procyclic form of T. brucei and functions as a cytochrome oxidase subunit II-specific k-RNA-editing accessory factor. To gain insight into its functions, we solved the crystal structure of the T. brucei p22 protein to 2.0-A resolution. The p22 structure consists of a six-stranded, antiparallel beta-sheet flanked by five alpha-helices. Three p22 subunits combine to form a tight trimer that is primarily stabilized by interactions between helical residues. One side of the trimer is strikingly acidic, while the opposite face is more neutral. Database searches show p22 is structurally similar to human p32, which has a number of functions, including regulation of RNA splicing. p32 interacts with a number of target proteins via its alpha1 N-terminal helix, which is among the most conserved regions between p22 and p32. Co-immunoprecipitation studies showed that p22 interacts with the editosome and the k-RNA accessory protein, TbRGG2, and alpha1 of p22 was shown to be important for the p22-TbRGG2 interaction. Thus, these combined studies suggest that p22 mediates its role in k-RNA editing by acting as an adaptor protein.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2881812 | PMC |
http://dx.doi.org/10.1074/jbc.M109.066597 | DOI Listing |
J Biol Chem
June 2010
Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
Kinetoplastid RNA (k-RNA) editing is a complex process in the mitochondria of kinetoplastid protozoa, including Trypanosoma brucei, that involves the guide RNA-directed insertion and deletion of uridines from precursor-mRNAs to produce mature, translatable mRNAs. k-RNA editing is performed by multiprotein complexes called editosomes. Additional non-editosome components termed k-RNA-editing accessory factors affect the extent of editing of specific RNAs or classes of RNAs.
View Article and Find Full Text PDFExp Parasitol
October 2003
Department of Microbiology and Immunology and Witebsky Center for Microbial Pathogenesis and Immunology, SUNY Buffalo School of Medicine, Buffalo, NY, USA.
The RNA binding protein RBP16 regulates mitochondrial RNA editing and stability in Trypanosoma brucei. To aid in understanding the biochemical mechanisms of RBP16 function, we analyzed the RNA and protein binding capacity of RBP16 and its individual cold shock (CSD) and RGG domains. Both recombinantly expressed domains possess RNA binding activity.
View Article and Find Full Text PDFNucleic Acids Res
December 2001
Department of Microbiology and Witebsky Center for Microbial Pathogenesis and Immunology, SUNY Buffalo School of Medicine, 138 Farber Hall, Buffalo, NY 14214, USA.
RBP16 is a guide RNA (gRNA)-binding protein that was shown through immunoprecipitation experiments to interact with approximately 30% of total gRNAs in Trypanosoma brucei mitochondria. To gain insight into the biochemical function of RBP16, we used affinity chromatography and immunoprecipitation to identify RBP16 protein binding partners. By these methods, RBP16 does not appear to stably interact with the core editing machinery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!