Exploiting the therapeutic potential of Plasmodium falciparum solute transporters.

Trends Parasitol

Centre for Infection, Division of Cellular and Molecular Medicine, St. George's, University of London, Cranmer Terrace, London, UK.

Published: June 2010

Mammalian transport proteins are essential components of cellular function that have been very successfully exploited as drug targets. Over the past few years, a small but increasing number of Plasmodium transport proteins have been validated as being crucial for parasite survival. This is an essential early step towards identifying new targets for urgently needed antimalarial drugs. Presented here is an overview of our current understanding of the transport processes used by Plasmodium parasites, with an emphasis on their therapeutic potential. It demonstrates the largely untapped potential of targeting these important pathways (including P-type ATPases, ABC transporters and K+ channels) and highlights where these parasites might be most vulnerable to intervention.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pt.2010.03.004DOI Listing

Publication Analysis

Top Keywords

therapeutic potential
8
transport proteins
8
exploiting therapeutic
4
potential plasmodium
4
plasmodium falciparum
4
falciparum solute
4
solute transporters
4
transporters mammalian
4
mammalian transport
4
proteins essential
4

Similar Publications

Introduction: Convalescent plasma (CP) therapy is a form of passive immunization which has been used as a treatment for coronavirus disease 2019 (COVID-19). This study aims to evaluate the efficacy and safety of CP therapy in patients with severe COVID-19.

Methodology: In this retrospective cohort study, 50 patients with severe COVID-19 treated with CP at Shahid Beheshti Hospital, Kashan, in 2019 were evaluated.

View Article and Find Full Text PDF

Introduction: The global healthcare system faced unparalleled challenges during the coronavirus disease 2019 (COVID-19) pandemic, potentially reshaping antibiotic usage trends. This study aimed to evaluate the knowledge, perceptions, and observations of community pharmacists concerning antibiotic utilization during and after the pandemic; and offer crucial insights into its impact on antibiotic usage patterns and infection dynamics.

Methodology: This cross-sectional study involved 162 community pharmacists in Northern Cyprus.

View Article and Find Full Text PDF

Introduction: Hemoperfusion (HP), a blood filtration method targeting the removal of toxins and inflammatory elements, was investigated in this study. The objective was to present the observations in four individuals with confirmed COVID-19 who underwent several rounds of HP utilizing the HA330 cartridge at a hospital in Indonesia.

Case Studies: We report four cases of COVID-19 patients who underwent HP.

View Article and Find Full Text PDF

Nevoid basal cell carcinoma syndrome (Gorlin syndrome): a case report.

J Med Case Rep

January 2025

Department of Dermatology and Venereology, Faculty of Medicine, University of Aleppo, Aleppo, Syria.

Background: Basal cell nevus syndrome, also known as Gorlin or Gorlin-Goltz syndrome, is a hereditary condition caused by mutation in the PATCHED gene. The syndrome presents with a wide range of clinical manifestations, including basal cell carcinomas, jaw cysts, and skeletal anomalies. Diagnosis is based on specific criteria, and treatment typically includes surgical removal of basal cell carcinomas.

View Article and Find Full Text PDF

One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!