A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Formulation of synthetic greywater as an evaluation tool for wastewater recycling technologies. | LitMetric

On-site greywater recycling is one of the main ways of preserving water resources in urban or arid areas. This study aims to formulate model synthetic greywater (SGW) in order to evaluate and compare the performances of several recycling processes on a reproducible effluent. The formulated SGW is composed of septic effluent to provide indicators of faecal contamination, and technical quality chemical products to simulate organic pollution of greywater. To ensure that the SGW developed is representative of household greywater, its analysis was compared to real greywater collected and analysed (RGWs) and to real greywater mentioned in previous publications (RGW(L)). The performance of a direct nanofiltration process with a concentration factor of 87.5% at 35 bar was then tested on both real greywater and SGW. The laboratory experimental results are promising: fluxes and retention rates were high, and similar for both effluents. The permeation flux was higher than 50 L h(-1) m(-2). Retentions greater than 97% for biochemical oxygen demand for 5 days (BOD5) and 92% for anionic surfactants were observed. No Enterococcus were detected in the two permeates. These results confirm that the model SGW developed in this study shows the same behaviour as real greywater when recycled. Thus, the use of this SGW developed in this study was validated for the evaluation of membrane efficiency to treat greywater. This new tool will be a real asset for future studies.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330903431547DOI Listing

Publication Analysis

Top Keywords

real greywater
16
sgw developed
12
greywater
10
synthetic greywater
8
greywater sgw
8
developed study
8
sgw
6
real
5
formulation synthetic
4
greywater evaluation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!