A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Photochromic organometallics with a dithienylethene (DTE) Bridge, [Y-C[triple bond]C-DTE-C[triple bond]C-Y] (Y={MCp*(dppe)}): photoswitchable molecular wire (M=Fe) versus dual photo- and electrochromism (M=Ru). | LitMetric

AI Article Synopsis

  • Dinuclear acetylide-type complexes bridged by a dithienylethene (DTE) unit show distinct photochromic behavior under UV and visible light, switching between open (1O) and closed (1C) isomers, with ruthenium complexes outperforming iron in efficiency.
  • The electronic coupling (V(ab)) and switching factor (SF) indicate that the photochromic processes correlate with wirelike performance, with 1(Fe) showing a high switching factor (SF=39) compared to 1(Ru) (SF=4.2), highlighting the role of pi-conjugated systems.
  • Different oxidation behaviors were observed: iron complex 1(Fe) exhibits

Article Abstract

Dinuclear acetylide-type complexes bridged by a photochromic dithienylethene unit (DTE), [Y-C[triple bond]C-DTE-C[triple bond]C-Y] 1 (Y={MCp*(dppe)}; Cp*=pentamethylcyclopentadienyl, M=Fe (1(Fe)), Ru (1(Ru))), have been prepared, and their wirelike and switching behavior, as well as their oxidation chemistry has been investigated. The DTE complexes 1 exhibit photochromic behavior in a manner similar to organic DTE derivatives; UV irradiation causes ring closure of the open isomer 1O to form the closed isomer 1C and visible-light irradiation of the resultant 1C causes reverse ring opening to regenerate 1O. But the performance is dependent on the metals. With respect to the interconversion rates and the 1C content at the photostationary state under UV irradiation, the ruthenium complex 1(Ru) is superior to the iron analogue 1(Fe). The wirelike performance is associated with the photochromic processes, and the efficient switching performance has been verified for 1(Fe) as characterized by the V(ab) values [V(ab) is the electronic coupling derived from intervalence charge-transfer (IVCT) bands: V(ab)(1(Fe)C; ON)=0.047 eV versus V(ab)(1(Fe)O; OFF)=0 eV], and are also supported by the large switching factor (SF=K(C)(C; ON)/K(C)(O; OFF)=39; K(C)=comproportionation constant). SF for 1(Ru) is determined to be 4.2. The remarkable switching behavior arises from the different pi-conjugated systems in the two isomeric forms, that is, cross-conjugated (1O) and fully conjugated pi-systems (1C). It was also found that, in contrast to the reversible redox behavior of the iron complex 1(Fe), the ruthenium complex 1(Ru)O undergoes oxidative ring closure to form the dicationic species of the closed isomer 1(Ru)C(2+) and, thus, the ruthenium system 1(Ru) shows dual photo- and electrochromism. The distinct oxidation behavior of 1(Fe) and 1(Ru) can be ascribed to the spin distribution on the diradical intermediates 1(Fe)O(2+) and 1(Ru)O(2+), as supported by DFT calculations.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.200903583DOI Listing

Publication Analysis

Top Keywords

[y-c[triple bond]c-dte-c[triple
8
bond]c-dte-c[triple bond]c-y]
8
bond]c-y] y={mcp*dppe}
8
dual photo-
8
photo- electrochromism
8
1fe 1ru
8
switching behavior
8
ring closure
8
closed isomer
8
ruthenium complex
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!