Wheat contains three different classes of proteinaceous xylanase inhibitors (XIs), i.e. Triticum aestivum xylanase inhibitors (TAXIs) xylanase-inhibiting proteins (XIPs), and thaumatin-like xylanase inhibitors (TLXIs) which are believed to act as a defensive barrier against phytopathogenic attack. In the absence of relevant data in wheat kernels, we here examined the response of the different members of the XI protein population to infection with a DeltaTri5 mutant of Fusarium graminearum, the wild type of which is one of the most important wheat ear pathogens, in early developing wheat grain. Wheat ears were inoculated at anthesis, analyzed using 2-D DIGE and multivariate analysis at 5, 15, and 25 days post anthesis (DPA), and compared with control samples. Distinct abundance patterns could be distinguished for different XI forms in response to infection with F. graminearum DeltaTri5. Some (iso)forms were up-regulated, whereas others were down-regulated. This pathogen-specific regulation of proteins was mostly visible at five DPA and levelled off in the samples situated further from the inoculation point. Furthermore, it was shown that most identified TAXI- and XIP-type XI (iso)forms significantly increased in abundance from the milky (15 DPA) to the soft dough stages (25 DPA) on a per kernel basis, although the extent of increase differed greatly. Non-glycosylated XIP forms increased more strongly than their glycosylated counterparts.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pmic.200900493DOI Listing

Publication Analysis

Top Keywords

xylanase inhibitors
12
2-d dige
8
fusarium graminearum
8
graminearum deltatri5
8
wheat
6
dige reveals
4
reveals changes
4
changes wheat
4
xylanase
4
wheat xylanase
4

Similar Publications

Applications of MicroED in structural biology and structure-based drug discovery.

Biochim Biophys Acta Gen Subj

January 2025

Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan. Electronic address:

Microcrystal electron diffraction (MicroED) is an emerging method for the structure determination of proteins and peptides, enzyme-inhibitor complexes. Several structures of biomolecules, including lysozyme, proteinase K, adenosine receptor A2A, insulin, xylanase, thermolysin, DNA, and Granulovirus occlusion bodies, have been successfully determined through MicroED. As MicroED uses very small crystals for structure determination, therefore, it has several advantages over conventional X-ray diffraction methods.

View Article and Find Full Text PDF

Unlabelled: Wheat ( L.), a vital cereal crop, provides over 20% of the total calories and protein in the human diet. However, , the pathogen responsible for Fusarium head blight (FHB), poses a significant threat to wheat production by contaminating grains with harmful mycotoxins.

View Article and Find Full Text PDF

Xylanases require thermal stability to withstand the pelleting process, pH stability to function in the gastrointestinal tract, and resistance to xylanase inhibitors in raw materials to be effective in animal feed. A GH11 family xylanase originating from an anaerobic fungus, Orpinomyces sp. strain PC-2, has high specific activity and resistance to xylanase inhibitors intrinsically.

View Article and Find Full Text PDF

Xylanase enhances gut microbiota-derived butyrate to exert immune-protective effects in a histone deacetylase-dependent manner.

Microbiome

October 2024

Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, 200241, China.

Background: Commensal bacteria in the intestine release enzymes to degrade and ferment dietary components, producing beneficial metabolites. However, the regulatory effects of microbial-derived enzymes on the intestinal microbiota composition and the influence on host health remain elusive. Xylanase can degrade xylan into oligosaccharides, showing wide application in feed industry.

View Article and Find Full Text PDF

In this comprehensive genome-wide study, we identified and classified 83 Xylanase Inhibitor Protein (XIP) genes in wheat, grouped into five distinct categories, to enhance understanding of wheat's resistance to Fusarium head blight (FHB), a significant fungal threat to global wheat production. Our analysis reveals the unique distribution of XIP genes across wheat chromosomes, particularly at terminal regions, suggesting their role in the evolutionary expansion of the gene family. Several XIP genes lack signal peptides, indicating potential alternative secretion pathways that could be pivotal in plant defense against FHB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!