Application of electro-active biofilms.

Biofouling

School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, UK.

Published: January 2010

The concept of an electro-active biofilm (EAB) has recently emerged from a few studies that discovered that certain bacteria which form biofilms on conductive materials can achieve a direct electrochemical connection with the electrode surface using it as electron exchanger, without the aid of mediators. This electro-catalytic property of biofilms has been clearly related to the presence of some specific strains that are able to exchange electrons with solid substrata (eg Geobacter sulfurreducens and Rhodoferax ferrireducens). EABs can be obtained principally from natural sites such as soils or seawater and freshwater sediments or from samples collected from a wide range of different microbially rich environments (sewage sludge, activated sludge, or industrial and domestic effluents). The capability of some microorganisms to connect their metabolisms directly in an external electrical power supply is very exciting and extensive research is in progress on exploring the possibilities of EABs applications. Indeed, the best known application is probably the microbial fuel cell technology that is capable of turning biomass into electrical energy. Nevertheless, EABs coated onto electrodes have recently become popular in other fields like bioremediation, biosynthesis processes, biosensor design, and biohydrogen production.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08927010903161281DOI Listing

Publication Analysis

Top Keywords

application electro-active
4
electro-active biofilms
4
biofilms concept
4
concept electro-active
4
electro-active biofilm
4
biofilm eab
4
eab emerged
4
emerged studies
4
studies discovered
4
discovered bacteria
4

Similar Publications

High-performance eco-friendly soft actuators showing large displacement, fast response, and long-term operational capability require further development for next-generation bioinspired soft robots. Herein, we report an electro-ionic soft actuator based on carboxylated cellulose nanocrystals (CCNC) and carboxylated cellulose nanofibers (CCNF), graphene nanoplatelets (GN), and ionic liquid (IL). The actuator exhibited exceptional actuation performances, achieving large displacements ranging from 1.

View Article and Find Full Text PDF

In the past decade, organic mixed ion-electron conductors have been successfully adopted in innovative bioelectronic, neuromorphic, and electro-optical technologies, as well as in multiple energy harvesting and printed electronics applications. However, despite the intense research efforts devoted to these materials, organic mixed conductors have not yet found application in electronic/photonic devices operating in key regions of the electromagnetic spectrum, such as the microwave (>5 GHz) and terahertz (0.1-10 THz) ranges.

View Article and Find Full Text PDF

Recent advancements in antibiotics removal by bio-electrochemical systems (BESs): From mechanisms to application of emerging combined systems.

Water Res

January 2025

College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China. Electronic address:

Recent advancements in bio-electrochemical systems (BESs) for antibiotic removal are receiving great attentions due to the electro-active bacteria on the electrode that could elevate the removal efficiency. Enhanced detoxification performance of BESs compared to the traditional biological processes indicates the great potential serving as a sustainable alternative or a pre-/post-processing unit to improve the performance of biological processes. However, the successfully application of BESs to antibiotic-polluted water remediation requires a deeper discussion on their operational performance and emerging coupled systems.

View Article and Find Full Text PDF

In this work, we report the synthesis of poly (quinine--itaconic acid) incorporated graphene oxide composite that is electro-active and photo-active simultaneously. The poly (quinine--itaconic acid)@rGO composite was successfully utilized for electrochemical detection and photocatalytic degradation of hydroquinone (HQ). HQ is recognized as an environmental pollutant because of its high toxicity to human health even at low concentrations.

View Article and Find Full Text PDF

Generative models have demonstrated substantial promise in Natural Language Processing (NLP) and have found application in designing molecules, as seen in General Pretrained Transformer (GPT) models. In our efforts to develop such a tool for exploring the organic chemical space in search of potentially electro-active compounds, we present Llamol, a single novel generative transformer model based on the Llama 2 architecture, which was trained on a 12.5M superset of organic compounds drawn from diverse public sources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!