The paramagnetic ruthenium-biimidazole complexes [(acac)(2)Ru(III)(LH(-))] (1 = red-brown), [(acac)(2)Ru(III)(LH(2))](ClO(4)) (2 = pink) and Bu(4)N[(acac)(2)Ru(III)(L(2-))] (3 = greenish yellow) comprising of monodeprotonated, neutral and bideprotonated states of the coordinated biimidazole ligand (LH(n), n = 1, 2, 0), respectively, have been isolated (acac(-) = acetylacetonate). Single-crystal X-ray diffraction of 1 reveals that the asymmetric unit consists of three independent molecules: A-C, where molecule A corresponds to complex 1 and the other two molecules B and C co-exist as a hydrogen bonded dimeric unit perhaps between the cationic 2(+) and anionic 3(-). The packing diagram further reveals that the molecule A in the crystal of 1 also forms a hydrogen bonded dimer with the neighbouring another unit of molecule A. The formation of [(acac)(2)Ru(III)(LH(2))](ClO(4)) (2) has also been authenticated independently by its single-crystal X-ray structure. The packing diagram of 2 shows multiple hydrogen bonds between the N-H protons of coordinated LH(2) and the counter ClO(4)(-). Paramagnetic complexes show (1)H NMR spectra over a wide range of chemical shift, delta (ppm), +10 to -35 in CDCl(3). One-electron paramagnetic 1-3 (mu/B.M. approximately 1.9) exhibit distinct rhombic-EPR spectra with relatively large g anisotropic factors: 2.136-2.156 and Deltag 0.65-0.77, typical for distorted octahedral ruthenium(III) complexes. The complexes 1-3 are inter-convertible as a function of pH. The pK(a1) and pK(a2) of 6.8 and 11, respectively, for 2 are estimated by monitoring the pH dependent spectral changes. The Ru(III)-Ru(IV) couple near 1.25 V vs. SCE remains almost invariant in 1-3 whereas the corresponding Ru(III)-Ru(II) couple varies appreciably in the range of -0.52 to -0.85 V vs. SCE based on the protonated-deprotonated states of the coordinated biimidazole ligand. Compounds 1-3 exhibit one weak ligand to metal charge transfer (LMCT) transition near 500 nm and intense intraligand transitions in the higher energy UV region. The spectrophotometric titrations of 2 with the TBA (TBA = tetrabutylammonium) salts of a wide variety of anions, F(-), Cl(-), Br(-), I(-), HSO(4)(-), OAc(-), H(2)PO(4)(-) in CH(3)CN reveal that the possible hydrogen bonds between the N-H protons of LH(2) in 2 and Cl(-) or Br(-) or I(-) or HSO(4)(-) or H(2)PO(4)(-) anion are rather weak or negligible. However, in presence of excess H(2)PO(4)(-) anion, the molar ratio of 2 to H(2)PO(4)(-) being 1 : 4, simple liberation of one N-H proton of the coordinated LH(2) in 2 has been taken place which in effect yields 1 and H(3)PO(4). On the contrary, the spectrophotometric titrations of 1 : 1 molar solution of 2 and OAc(-) or F(-) anion suggest the initial formation of hydrogen bonds between the N-H protons of LH(2) in 2 and the anion with the calculated log K value of 5.92 or 4.7, respectively, which eventually leads to the transfer of one of the N-H protons of LH(2) in 2 to the anion, resulting in 1 and HOAc or HF. On addition of excess OAc(-) to the above solution of 1 (molar ratio of OAc(-) to 1, 4 : 1), further hydrogen bonding between the N-H proton of LH(-) in 1 and OAc(-) occurs but without the abstraction of the N-H proton of LH(-). However, excess F(-) anion concentration (molar ratio of anion to 1, 5 : 1) facilitates the removal of the remaining N-H proton of LH(-) in 1 which in turn yields 3 incorporating the bideprotonated form L(2-).

Download full-text PDF

Source
http://dx.doi.org/10.1039/b919036hDOI Listing

Publication Analysis

Top Keywords

n-h protons
16
n-h proton
16
hydrogen bonds
12
bonds n-h
12
protons lh2
12
molar ratio
12
proton lh-
12
paramagnetic ruthenium-biimidazole
8
anion
8
states coordinated
8

Similar Publications

We report the proton-coupled electron transfer (PCET) reactivity of an octahedral Ta(V) aniline complex supported by an acridane-derived redox active NNN pincer ligand. The reversible binding of aniline to a Ta(V) dichloride induces significant coordination-induced bond weakening (CIBW) of the aniline N-H bonds. This enables a rare two-fold hydrogen atom abstraction, resulting in a terminal imido complex and a two-electron oxidation of the NNN pincer ligand, all while maintaining the metal's oxidation state.

View Article and Find Full Text PDF

A Two-Dimensional Layered Heteropolyoxoniobate Based on Cubic Sn(IV)-Containing {SnNbO} Cages with Good Proton Conductivity Property.

Inorg Chem

December 2024

Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian350108, China.

The first example of a Sn(IV)-containing heteropolyoxoniobate KH[Cu(en)]{[Sn(OH)] (HNbO)}·2en·88HO () is built from nanoscale high-nuclearity cubic {[Sn(OH)](HNbO)} cluster and [Cu(en)] complexes. The cubic {[Sn(OH)](HNbO)} cage is composed of eight {NbO} clusters and 12 SnO octahedrons. The eight {NbO} fragments are situated at the vertices of the cubic cage, while the 12 SnO octahedrons are positioned along the edges of the cubic cage.

View Article and Find Full Text PDF

A novel organic-inorganic material (CHN)ZnCl·2Cl was synthesized via a slow evaporation approach and subjected to extensive characterization. Techniques involving X-ray diffraction, SEM/EDX, Hirshfeld surface examination, IR/Raman spectroscopy, thermal behavior (TG/DTG/SDTA and DSC), and electric and dielectric studies were applied. Examination of the crystal structure reveals that the synthesized material adopts a monoclinic system, particularly belonging to the 2/ space group with unit cell parameters = 11.

View Article and Find Full Text PDF

Gearing Effects on -9-Anth-PyBidine-Cu(OAc)-Catalyzed Asymmetric Direct Haloimidation Reactions of Alkylidenemalononitriles.

Org Lett

December 2024

Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Synthetic Organic Chemistry, Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan.

A newly developed -9-anthranylmethyl bis(imidazolidine)pyridine (-9-Anth-PyBidine)-Cu(OAc) complex catalyzed asymmetric haloimidation reactions of alkylidenemalononitriles with -bromosuccinimide and -chlorosuccinimide, employing the succinimide moiety directly as a copper-bound nucleophile. The anthranyl substituent showed a gearing effect that produced a well-organized asymmetric sphere involving the -H proton of the imidazolidine ring in the ligand. The gearing effect afforded hydrogen bonding-assisted copper-catalyzed haloimidation reactions with high enantioselectivity.

View Article and Find Full Text PDF

Variable stoichiometry and a salt-cocrystal intermediate in multicomponent systems of flucytosine: structural elucidation and their impact on stability.

Acta Crystallogr B Struct Sci Cryst Eng Mater

December 2024

Centre for X-ray Crystallography, Department of Analytical and Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana 500007, India.

New cocrystals and a salt-cocrystal intermediate system involving the antifungal drug flucytosine (FCY) and various coformers including caffeic acid (CAF), 2-chloro-4-nitrobenzoic acid (CNB), hydroquinone (HQN), resorcinol (RES) and catechol (CAL), are reported. The crystal structures of the prepared multicomponent systems were determined through SC-XRD analysis and characterized by different solid-state techniques. All FCY multicomponent systems crystallize in anhydrous form with different stoichiometric ratios.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!