A simple method for fabricating multi-layer PDMS structures for 3D microfluidic chips.

Lab Chip

Nano Science and Technology Program and KAUST-HKUST Micro/Nanofluidic Joint Laboratory, Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.

Published: May 2010

We report a simple methodology to fabricate PDMS multi-layer microfluidic chips. A PDMS slab was surface-treated by trichloro (1H,1H,2H,2H-perfluorooctyl) silane, and acts as a reusable transferring layer. Uniformity of the thickness of the patterned PDMS layer and the well-alignment could be achieved due to the transparency and proper flexibility of this transferring layer. Surface treatment results are confirmed by XPS and contact angle testing, while bonding forces between different layers were measured for better understanding of the transferring process. We have also designed and fabricated a few simple types of 3D PDMS chip, especially one consisting of 6 thin layers (each with thickness of 50 mum), to demonstrate the potential utilization of this technique. 3D fluorescence images were taken by a confocal microscope to illustrate the spatial characters of essential parts. This fabrication method is confirmed to be fast, simple, repeatable, low cost and possible to be mechanized for mass production.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b923101cDOI Listing

Publication Analysis

Top Keywords

microfluidic chips
8
transferring layer
8
pdms
5
simple
4
simple method
4
method fabricating
4
fabricating multi-layer
4
multi-layer pdms
4
pdms structures
4
structures microfluidic
4

Similar Publications

An integrated magnetoimpedance biosensor microfluidic magnetic platform for the evaluation of the cardiac marker cTnI.

Anal Methods

January 2025

Microelectronic Research & Development Center, School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China.

An integrated magnetoimpedance (MI) biosensor microfluidic magnetic platform was proposed for the evaluation of the cardiac marker, cardiac troponin I (cTnI). This bioanalyte evaluation platform mainly comprised three external permanent magnets (PMs), one MI element, two peelable SiO film units and a microfluidic chip (MFC). The MI element was made of micro-electro-mechanical system (MEMS)-based multilayered [Ti (6 nm)/FeNi (100 nm)]/Cu (400 nm)/[Ti (6 nm)/FeNi (100 nm)] thin films and designed as meander structures with closed magnetic flux.

View Article and Find Full Text PDF

Recent advances in microfluidic technology highlight electrowetting for its programmability and precision. However, traditional electrowetting chips face limitations in scalability due to fixed electrode sizes. Optoelectrowetting (OEW) offers a solution with light-controlled virtual electrodes, but droplet splitting remains challenging.

View Article and Find Full Text PDF

We engineered a microfluidic platform to study the effects of bioactive glass nanoparticles (BGNs) on cell viability under static culture. We incorporated different concentrations of BGNs (1%, 2%, and 3% w/v) in collagen hydrogel (with a concentration of 3.0 mg/mL).

View Article and Find Full Text PDF

A microfluidics platform for simultaneous evaluation of sensitivity and side effects of anti-cancer drugs using a three-dimensional culture method.

Sci Rep

January 2025

Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu , Tokyo, 183-8509, Japan.

Organoids are stem cell-derived three-dimensional tissue cultures composed of multiple cell types that recapitulate the morphology and functions of their in vivo counterparts. Organ-on-a-chip devices are tiny chips with interconnected wells and channels designed using a perfusion system and microfluidics to precisely mimic the in vivo physiology and mechanical forces experienced by cells in the body. These techniques have recently been used to reproduce the structure and function of organs in vitro and are expected to be promising alternatives for animal experiments in the future.

View Article and Find Full Text PDF

As the prevalence of cancer is escalating, there is an increased demand for early and sensitive diagnostic tools. A major challenge in early detection is the lack of specific biomarkers, and a readily accessible, sensitive and rapid detection method. To meet these challenges, cancer-derived small extracellular vesicles (sEVs) have been discovered as a new promising cancer biomarker due to the high abundance of sEVs in body fluids and their extensive cargo of biomarkers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!