We propose a method to obtain the resonance frequencies of coupled optical modes for a stack of two periodically corrugated slabs. The method is based on the modes in each slab, which are derived by the Fourier modal method in combination with the optical scattering matrix theory. We then use the resonant mode approximation of the scattering matrices to develop a linear eigenvalue problem with dimensions equal to the number of resonant modes. Its solutions are the resonance frequencies of the coupled system and exhibit a good agreement with exact solutions. We demonstrate the capabilities of this method for pairs of planar waveguides and gratings of one-dimensional wires.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.18.007569 | DOI Listing |
Eur J Neurosci
January 2025
Department of Psychology, University of Georgia, Athens, Georgia, USA.
Resting-state functional connectivity analyses have been used to examine synchrony in neural networks in substance use disorders (SUDs), with the default mode network (DMN) one of the most studied. Prior research has generally found less DMN synchrony during use and greater synchrony during cessation, although little research has utilized this method with opioid use. This study examined resting brain activity in treatment-seeking persons who use opioids at two points-when using opioids and when opioid-free-to determine whether the DMN exhibits different levels of connectivity during opioid use and cessation and whether differences in connectivity predict subsequent relapse.
View Article and Find Full Text PDFISA Trans
December 2024
National Key Laboratory of Aerospace Flight Dynamics, School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China. Electronic address:
This paper investigates an integrated model-control scheme for large-scale spacecraft, focusing on orbit-attitude-vibration dynamics subject to strong time-varying coupling characteristics. The proposed scheme aims to achieve cooperative modeling and control for orbit maintenance, attitude stabilization and vibration suppression simultaneously. An integrated dynamic model is established using the Absolute Nodal Coordinate Formulation and Lagrangian mechanics, where time-varying coupling terms are preserved to enhance model integrity, contrasting with the reduction and decoupling methods commonly adopted in existing literature.
View Article and Find Full Text PDFBrain Behav
January 2025
Department of Health and Exercise Science, Wake Forest University, Winston-Salem, North Carolina, USA.
Purpose: The prevalence of sedentary lifestyles (SL), which includes both high volumes of extended sitting behavior and a low volume of steps accumulated across the day, among older adults continues to rise contributing to increases in associated comorbidities and the loss of independence. The social, personal, and economic burdens are enormous. In recognition of the health implications of SL, current public health physical activity guidelines now emphasize the complimentary goals of sitting less by moving more.
View Article and Find Full Text PDFHealth Sci Rep
January 2025
Division of Descriptive Research Indian Council of Medical Research-Headquarters New Delhi Delhi India.
Background And Aims: In the past decade, unmanned aerial systems (UASs), commonly known as drones, have found applications not only in military and agriculture but also in the transportation of medical supplies.
Purpose: The present study was conducted to assess the practicality of utilizing drones as a mode for the delivery of vaccines to combat the challenges.
Study Design: An exploratory study.
Anal Methods
January 2025
Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, SC, 88035-972, Brazil.
A new analytical method was developed for the determination of 14 multiclass emerging organic contaminants in surface waters using LC-MS, and Dispersive Liquid-Liquid Microextraction (DLLME) for extraction. Different Natural Deep Eutectic Solvents (NADESs) composed of terpenes and organic acids were tested as extraction solvents and characterized by Fourier Transform Infrared Spectroscopy (FTIR), Hydrogen Nuclear Magnetic Resonance Spectroscopy (H-NMR), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), density, and viscosity, eliminating the need to use traditional chlorinated solvents. NADES produced with butyric acid and thymol showed the best results and was selected for application for the first time in the extraction of emerging organic contaminants of different classes in water samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!