We propose a compound metallic grating with perpendicular cuts in each slit and investigate its optical transmission property theoretically. The odd and even waveguide modes exhibit different behaviors when the cuts are set asymmetrically in the slits. Particularly, it is shown that the transmission dips of transmission spectrum for this compound periodic structure can be realized alternately by shifting the position of cuts in the slit. The effect of cut size on the phase resonances in the proposed metallic grating is also identified, and the underlying physics is discussed by the simulated field and phase maps.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.18.006871 | DOI Listing |
ACS Nano
January 2025
Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos 13566-590, Brazil.
Monolayers of transition-metal dichalcogenides, such as MoS, have attracted significant attention for their exceptional electronic and optical properties, positioning them as ideal candidates for advanced optoelectronic applications. Despite their strong excitonic effects, the atomic-scale thickness of these materials limits their light absorption efficiency, necessitating innovative strategies to enhance light-matter interactions. Plasmonic nanostructures offer a promising solution to overcome those challenges by amplifying the electromagnetic field and also introducing other mechanisms, such as hot electron injection.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
State Key Laboratory of Luminescent Materials and Devices &, South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy &, Information Polymer Materials, South China University of Technology, 510640, Guangzhou, P. R. China.
Nanoimprint lithography (NIL) has been broadly applied in the fabrication of nano-patterned polymer films for cost-efficiency and high through-put; however, the intrinsic tradeoff between mechanical strength and residual stress of polymer films significantly limits the NIL resolution while the harsh processing conditions limit its versatile applications to different substrates. Herein, 1 nm metal oxide cluster, phosphotungstic acid (PTA), is used to complex with polyvinyl alcohol (PVA) for high-resolution NIL that can be operated at large-scale and mild conditions. The ultra-small size of PTA enables dense supramolecular interaction with PVA for the diminished crystallinity and accelerated chain dynamics that help relax the residual stress during film casting.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
In order to disintegrate nuclear fuel rods in the grid connection structure, a 10 kW fiber laser was used to cut a stainless steel simulation component with four layers of 3 mm thick plates and 12 mm gaps. The slit width is regarded as an important indicator to evaluate the cutting quality of the four-layer stainless steel plate. The results showed that good laser cutting quality can be successfully achieved under the proper process parameters.
View Article and Find Full Text PDFMolecules
November 2024
School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
Miniaturized spectrometers have significantly advanced real-time analytical capabilities in fields such as environmental monitoring, healthcare diagnostics, and industrial quality control by enabling precise on-site spectral analysis. However, achieving high sensitivity and spectral resolution within compact devices remains a significant challenge, particularly when detecting low-concentration analytes or subtle spectral variations critical for chemical and molecular analysis. This study introduces an innovative approach employing guided-mode resonance filters (GMRFs) to address these limitations.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
Physics Department, State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures [Ministry of Education (MOE)], Fudan University, Shanghai 200433, China.
The hybrid heterostructures formed between two-dimensional (2D) materials and organic molecules have gained great interest for their potential applications in advanced photonic and optoelectronic devices, such as solar cells and biosensors. Characterizing the interfacial structure and dynamic properties at the molecular level is essential for realizing such applications. Here, we report a time-resolved sum-frequency generation (TR-SFG) approach to investigate the hybrid structure of polymethyl methacrylate (PMMA) molecules and 2D transition metal dichalcogenides (TMDCs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!