This work presents a simple compensation method for widening the viewing angle of transflective liquid-crystal displays (TR-LCDs). For an off-axis light, the slow axis of a biaxial film shifts linearly as the Nz factor is varied. By using this optical characteristic of a biaxial film, the broadband condition of broadband circular polarizers exactly holds over a full 80 degrees viewing cone, thus eliminating the off-axis light leakage to widen the viewing angle of TR-LCDs. Based on the proposed compensation method, the TR-LCDs theoretically have a wide spectral bandwidth and a viewing angle of 80 degrees for contrast-ratio (CR) >100:1 and >30:1 in transmissive and reflective modes, respectively. Experiments also show that the proposed TR-LCD has a viewing angle of over the entire 80 degrees and 65 degrees viewing cone in T-mode and R-mode, respectively, for CR>10:1. The proposed TR-LCD is highly promising for mobile display applications.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.18.004601DOI Listing

Publication Analysis

Top Keywords

viewing angle
16
wide spectral
8
spectral bandwidth
8
transflective liquid-crystal
8
liquid-crystal displays
8
compensation method
8
off-axis light
8
biaxial film
8
degrees viewing
8
viewing cone
8

Similar Publications

The utilization of liquid crystals (LC) as materials has enabled the enlargement of lenses with the potential to alter their focus. Tunable LC lenses with adjustable focus are essential for optical imaging, sensing, and detection devices. This technology offers many benefits, such as the ability to adjust focus, operate with low power, and be easily made.

View Article and Find Full Text PDF

DECT sparse reconstruction based on hybrid spectrum data generative diffusion model.

Comput Methods Programs Biomed

January 2025

Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, Nanjing, China; School of Computer Science and Engineering, Southeast University, Nanjing, China.

Purpose: Dual-energy computed tomography (DECT) enables the differentiation of different materials. Additionally, DECT images consist of multiple scans of the same sample, revealing information similarity within the energy domain. To leverage this information similarity and address safety concerns related to excessive radiation exposure in DECT imaging, sparse view DECT imaging is proposed as a solution.

View Article and Find Full Text PDF

Grids designed for tomography: Stereovision transmission electron microscopy makes it easy to determine the winding handedness of helical nanocoils.

Micron

January 2025

Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central-6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan. Electronic address:

Determining the handedness of helical nanocoils using transmission electron microscopy (TEM) has traditionally been challenging due to the deep depth of field and transmission nature of TEM, complementary techniques are considered necessary and have been practiced such as low angle rotary shadowing, scanning electron microscopy (SEM), or atomic force microscopy (AFM). These methods require customized sample preparation, making direct comparison difficult. Inspired by the need to identify the helical winding direction from TEM images alone, we developed a specialized tomography grid to capture stereo-pair images, enabling stereopsis.

View Article and Find Full Text PDF

Introduction: Intertrochanteric fractures are common in older adults and pose significant challenges in terms of morbidity and mortality. Accurate reduction and optimal implant positioning during operative stabilisation of these fractures reduce the rates of complications and reoperations while improving functional outcomes in this population. This study aimed to assess the effects of a structured educational intervention on the radiographic outcomes, reduction quality, and revision rates of intertrochanteric fractures.

View Article and Find Full Text PDF

Over recent years, automated Human Activity Recognition (HAR) has been an area of concern for many researchers due to its widespread application in surveillance systems, healthcare environments, and many more. This has led researchers to develop coherent and robust systems that efficiently perform HAR. Although there have been many efficient systems developed to date, still, there are many issues to be addressed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!