We comprehensively investigated the concentration effect of dispersed single-walled carbon nanotubes (SWCNTs) in polymer films for being a saturable absorber (SA) to stabilize the mode locking performance of the erbium-doped fiber laser (EDFL) pulse through the diagnosis of its nonlinear properties of SA. The measured modulation depth was from 1 to 4.5% as the thickness increased 18 to 265 microm. The full-width half-maximum (FWHM) of the stable mode-locked EDFL (MLEDFL) pulse decreased from 3.43 to 2.02 ps as the concentrations of SWCNTs SA increased 0.125 to 0.5 wt%. At constant concentration of 0.125 wt%, the similar pulse shortening effect of the MLEDFL was also observed when the FWHM decreased from 3.43 to 1.85 ps as the thickness of SWCNTs SA increased 8 to 100 microm. With an erbium-doped fiber length of 80 cm, the shortest pulse width of 1.85 ps were achieved at 1.56 microm with a repetition rate of 11.1 MHz and 0.2 mW of the output power under an output coupling ratio of 5%. An in-depth study on the stable mode-locked pulse formation employing SWCNTs SA, it is possible to fabricate the SWCNT films for use in high performance MLEDFL and utilization of many other low-cost nanodevices.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.18.003592DOI Listing

Publication Analysis

Top Keywords

saturable absorber
8
mode-locked pulse
8
erbium-doped fiber
8
stable mode-locked
8
decreased 343
8
swcnts increased
8
0125 wt%
8
pulse
6
concentration carbon
4
carbon nanotube
4

Similar Publications

Background: 5-Aminosalicylic acid (5-ASA), the first-line therapy for ulcerative colitis, is a poorly soluble zwitterionic drug. Unformulated 5-ASA is thought to be extensively absorbed in the small intestine.

Methods: The pH-dependent solubility of 5-ASA in vitro and the intestinal membrane distribution of 5-ASA and its N-acetyl metabolite (AC-5-ASA) after the oral administration of 5-ASA were examined in fed rats.

View Article and Find Full Text PDF

Tunable Multisoliton State Ultrafast Fiber Laser Based on NiSe and Generation of Vector Dual-Wavelength Solitons.

ACS Appl Mater Interfaces

January 2025

College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Lin'an 311300, China.

As a member of the chalcogenide family, NiSe exhibits a direct bandgap of 1.74 eV, making it a promising candidate for nonlinear optical devices. However, its potential in the near-infrared region of the telecommunication band has not been fully explored.

View Article and Find Full Text PDF

Janus transition metal disulfide (TMD) monolayers have two distinct carbon surfaces that break the inherent ground external mirror symmetry. When compared to traditional TMD materials, Janus TMDs not only inherit the advantages of traditional TMDs but also have new characteristics that are different from those of traditional TMDs. This paper describes the development of a stable passive Q-switched ytterbium-doped fiber laser (YDFL) with operating wavelengths of 1032.

View Article and Find Full Text PDF

Palladium Nanocubes as Saturable Absorbers for Mode-Locked Laser Generation at 1.56 μm.

Nanomaterials (Basel)

December 2024

College of Information Science and Engineering, Northeastern University, Shenyang 110819, China.

Palladium (Pd) nanocubes, a type of metallic nanostructure, have demonstrated remarkable optoelectronic properties, garnering significant attention. However, their nonlinear optical characteristics and related device applications remain underexplored. In this study, we report the fabrication of a novel saturable absorber (SA) by depositing Pd nanocubes onto a D-shaped fiber (DF).

View Article and Find Full Text PDF

Preparation of amorphous silicon-doped YO aerogel enabling nonlinear optical features for ultrafast photonics.

Nanophotonics

April 2024

School of Information Science and Engineering, Key Laboratory of Laser and Infrared System of Ministry of Education, Shandong University, Qingdao 266237, China.

Amorphous aerogels with the microscopic nanoscale three-dimensional meshes provide superb platforms for investigating unique physicochemical properties. In order to enhance the physical, thermal and mechanical performances, one efficient and common approach is integrating diverse functional materials. Herein, we report a simple strategy to fabricate the amorphous silicon doped YO aerogels with the post-gelation method under the N/EtOH supercritical atmosphere.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!