We present an experimental study of an integrated slot-waveguide refractive index sensor array fabricated in silicon nitride on silica. We study the temperature dependence of the slot-waveguide ring resonator sensors and find that they show a low temperature dependence of -16.6 pm/K, while at the same time a large refractive index sensitivity of 240 nm per refractive index unit. Furthermore, by using on-chip temperature referencing, a differential temperature sensitivity of only 0.3 pm/K is obtained, without individual sensor calibration. This low value indicates good sensor-to-sensor repeatability, thus enabling use in highly parallel chemical assays. We demonstrate refractive index measurements during temperature drift and show a detection limit of 8.8 x 10-6 refractive index units in a 7 K temperature operating window, without external temperature control. Finally, we suggest the possibility of athermal slot-waveguide sensor design.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.18.003226DOI Listing

Publication Analysis

Top Keywords

on-chip temperature
8
integrated slot-waveguide
8
slot-waveguide ring
8
ring resonator
8
refractive sensor
8
sensor array
8
temperature dependence
8
temperature
7
refractive
6
temperature compensation
4

Similar Publications

Van der Waals (vdWs) materials are promising candidates for hetero-integration with silicon photonics toward miniaturization and integration. VdWs materials like molybdenum telluride and black phosphorus, despite being prominent, exhibit air sensitivity, and their room temperature emissions can be significantly broadened by tens of meV. Here, a self-encapsulation strategy is developed to scalably synthesize robust 2D vdWs ErOCl with sub-meV narrow emissions at the telecom C-band.

View Article and Find Full Text PDF

Quantum technology exploits fragile quantum electronic phenomena whose energy scales demand ultra-low electron temperature operation. The lack of electron-phonon coupling at cryogenic temperatures makes cooling the electrons down to a few tens of millikelvin a non-trivial task, requiring extensive efforts on thermalization and filtering high-frequency noise. Existing techniques employ bulky and heavy cryogenic metal-powder filters, which prove ineffective at sub-GHz frequency regimes and unsuitable for high-density quantum circuits such as spin qubits.

View Article and Find Full Text PDF

The practical implementation of terahertz (THz) imaging and spectroscopic systems in real operational conditions requires them to be of a compact size, to have enhanced functionality, and to be user-friendly. This work demonstrates the single-sided integration of Fresnel-zone-plate-based optical elements with InGaAs bow-tie diodes directly on a semiconductor chip. Numerical simulations were conducted to optimize the Fresnel zone plate's focal length and the InP substrate's thickness to achieve constructive interference at 600 GHz, room-temperature operation and achieve a sensitivity more than an order of magnitude higher-up to 24.

View Article and Find Full Text PDF

Continuous-wave perovskite polariton lasers.

Sci Adv

January 2025

State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China.

Solution-processed semiconductor lasers are next-generation light sources for large-scale, bio-compatible and integrated photonics. However, overcoming their performance-cost trade-off to rival III-V laser functionalities is a long-standing challenge. Here, we demonstrate room-temperature continuous-wave perovskite polariton lasers exhibiting remarkably low thresholds of ~0.

View Article and Find Full Text PDF

On-Chip Metamaterial-Enhanced Mid-Infrared Photodetectors with Built-In Encryption Features.

Adv Sci (Weinh)

January 2025

College of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1, Sub-Lane Xiangshan, Xihu District, Hangzhou, 310024, China.

The integration of mid-infrared (MIR) photodetectors with built-in encryption capabilities holds immense promise for advancing secure communications in decentralized networks and compact sensing systems. However, achieving high sensitivity, self-powered operation, and reliable performance at room temperature within a miniaturized form factor remains a formidable challenge, largely due to constraints in MIR light absorption and the intricacies of embedding encryption at the device level. Here, a novel on-chip metamaterial-enhanced, 2D tantalum nickel selenide (Ta₂NiSe₅)-based photodetector, meticulously designed with a custom-engineered plasmonic resonance microstructure to achieve self-powered photodetection in the nanoampere range is unveiled.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!